64,456 research outputs found

    Adaptive Finite-time Fuzzy Control of Nonlinear Active Suspension Systems With Input Delay

    Get PDF
    This paper presents a new adaptive fuzzy control scheme for active suspension systems subject to control input time delay and unknown nonlinear dynamics. First, a predictor based compensation scheme is constructed to address the effect of input delay in the closed-loop system. Then, a fuzzy logic system (FLS) is employed as the function approximator to address the unknown nonlinearities. Finally, to enhance the transient suspension response, a novel parameter estimation error based finite-time (FT) adaptive algorithm is developed to online update the unknown FLS weights, which differs from traditional estimation methods, e.g. gradient algorithm with e-modification or σ-modification. In this framework, both the suspension and estimation errors can achieve convergence in finite-time. A Lyapunov-Krasovskii functional is constructed to prove the closed-loop system stability. Comparative simulation results based on a dynamic simulator built in a professional vehicle simulation software, Carsim, are provided to demonstrate the validity of the proposed control approach, and show its effectiveness to operate active suspension systems safely and reliably in various road conditions

    Adaptive Control By Regulation-Triggered Batch Least-Squares Estimation of Non-Observable Parameters

    Get PDF
    The paper extends a recently proposed indirect, certainty-equivalence, event-triggered adaptive control scheme to the case of non-observable parameters. The extension is achieved by using a novel Batch Least-Squares Identifier (BaLSI), which is activated at the times of the events. The BaLSI guarantees the finite-time asymptotic constancy of the parameter estimates and the fact that the trajectories of the closed-loop system follow the trajectories of the nominal closed-loop system ("nominal" in the sense of the asymptotic parameter estimate, not in the sense of the true unknown parameter). Thus, if the nominal feedback guarantees global asymptotic stability and local exponential stability, then unlike conventional adaptive control, the newly proposed event-triggered adaptive scheme guarantees global asymptotic regulation with a uniform exponential convergence rate. The developed adaptive scheme is tested to a well-known control problem: the state regulation of the wing-rock model. Comparisons with other adaptive schemes are provided for this particular problem.Comment: 29 pages, 12 figure

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
    • …
    corecore