1,159,205 research outputs found
Validity of Finite Element Method: Analysis of Laminated Composite Decks Plates Subjected to in Plane Loading
To verify the accuracy of the present technique, buckling loads are evaluated and validated with other works available in the literature. Further comparisons were carried out and compared with the results obtained by the ANSYS package and experimental results. The good agreement with available data demonstrates the reliability of the finite element method used
Stable Generalized Finite Element Method (SGFEM)
The Generalized Finite Element Method (GFEM) is a Partition of Unity Method
(PUM), where the trial space of standard Finite Element Method (FEM) is
augmented with non-polynomial shape functions with compact support. These shape
functions, which are also known as the enrichments, mimic the local behavior of
the unknown solution of the underlying variational problem. GFEM has been
successfully used to solve a variety of problems with complicated features and
microstructure. However, the stiffness matrix of GFEM is badly conditioned
(much worse compared to the standard FEM) and there could be a severe loss of
accuracy in the computed solution of the associated linear system. In this
paper, we address this issue and propose a modification of the GFEM, referred
to as the Stable GFEM (SGFEM). We show that the conditioning of the stiffness
matrix of SGFEM is not worse than that of the standard FEM. Moreover, SGFEM is
very robust with respect to the parameters of the enrichments. We show these
features of SGFEM on several examples.Comment: 51 pages, 4 figure
Stress-intensity factors for small surface and corner cracks in plates
Three-dimensional finite-element and finite-alternating methods were used to obtain the stress-intensity factors for small surface and corner cracked plates subjected to remote tension and bending loads. The crack-depth-to-crack-length ratios (a/c) ranged from 0.2 to 1 and the crack-depth-to-plate-thickness ratios (a/t) ranged from 0.05 to 0.2. The performance of the finite-element alternating method was studied on these crack configurations. A study of the computational effort involved in the finite-element alternating method showed that several crack configurations could be analyzed with a single rectangular mesh idealization, whereas the conventional finite-element method requires a different mesh for each configuration. The stress-intensity factors obtained with the finite-element-alternating method agreed well (within 5 percent) with those calculated from the finite-element method with singularity elements
Modelling of Drop Deformation: A Combination of the VOF Method and the Finite Element Method.
- …
