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AB!sTRAcT 

Three-dimensional finite-element and finite-element-alternating 

methods were used to obtain the stress-intensity factors for small surface 

and corner cracked plates subjected to remote tension and bending loads. 

The crack-depth-to-crack-length ratios (a/c) ranged from 0.2 to 1 and the 

crack-depth-to-plate-thickness ratios (a/t) ranged from 0.05  to 0.2. The 

performance of the finite-element alternating method was studied on these 

crack configurations. A study of the computational effort involved in the 

finite-element alternating method showed that several crack configurations 

could be analyzed with a single rectangular mesh idealization, whereas the 

conventional finite-element method requires a different mesh for each 

configuration. The stress-intensity factors obtained with the finite- 

element-alternating method agreed well (within 5 percent) with those 

calculated from the finite-element method with singularity elements. 

The stress-intensity factors calculated from the empirical equations 

proposed by Newman and Raju were generally within 5 percent of those 

calculated by the finite-element method. 

given herein should be useful in predicting crack-growth rates and fracture 

strengths of surface- and corner-cracked components. 

The stress-intensity factors 
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INTRODUCTION 

Surface and corner cracks may occur in many structural components. 

These cracks initiate near regions of stress concentrations and may cause 

premature failure of aircraft landing gears, spars, stiffeners, and other 

components [l]. Accurate stress-intensity factor solutions for these 

components are needed for reliable prediction of crack-growth rates and 

fracture strengths. 

Most of the life of these cracked components is spent when the cracks 

are small. Also, many applications of damage tolerance or durability 

analyses require the computation of stress-intensity factors for small 

cracks. Previous analyses of surface- and corner-crack configurations, 

using three-dimensional finite-element analyses [2-41, boundary-integral 

equation methods [5], and alternating methods [6-81 have considered crack- 

depth-to-plate-thickness ratios greater than or equal to 0.2. Engineering 

judgment or extrapolations were used to estimate stress-intensity factors 

for small suiface and corner cracks [9,10]. Therefore, more analyses are 

needed to verify these extrapolations for small cracks. 

paper is to present stress-intensity factors for a wide range of semi- 

elliptical surface cracks and quarter-elliptical corner cracks in plates 

with crack-depth-to-plate-thickness ratios less than 0.2 and obtain 

asymptotic values as crack-depth-to-plate thickness ratios approach zero. 

The purpose of this 
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Two popular methods to obtain the stress-intensity factors for the 

surface- and corner-crack configurations are the finite-element method with 

singularity elements [2-41 and the finite-element-alternating method [ll- 

131. 

with customized modeling near the crack front with singularity elements. 

Once such models are developed, accurate stress-intensity factors can be 

obtained [2-41. In contrast, the finite-element-alternating method does not 

need customized modeling near the crack front. 

uncracked solid is analyzed by the finite-element part of the method. 

second objective of this paper is to study various types of modeling that 

could be used and to study the computational efficiency of the method. 

stress-intensity factors obtained with the finite-element-alternating 

method were compared with those from the finite-element method with 

singularity elements for surface- and corner-crack configurations. 

stress-intensity factors obtained by these methods were also compared with 

values calculated from empirical equations for surface- and corner-cracked 

plates with crack-depth-to-plate-thickness ratios less than 0.2. 

In the finite-element method, large number of elements are needed 

This is because the 

The 

The 

The 

ANALYSIS 

Two types of crack configurations: a surface- and corner-cracked 

plate, as shown in Figure 1, were analyzed. 

element method and finite-element-alternating method were used to obtain the 

mode I stress-intensity factors. In these analyses, Poisson's ratio ( v ) 

was assumed to be 0.3. 

The three-dimensional finite- 
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Loading 

Two types of loading were applied to the crack configurations: remote 

uniform tension and remote out-of-plane bending (bending about the x-axis). 

The remote uniform tensile stress is St in the z-direction and the remote 

outer-fiber bending stress is Sb. 

stress calculated at the origin ( x - y - z = 0 in Fig. 1) without the crack 

present. 

The bending stress Sb is the outer fiber 

Stress-Intensity Factor 

The tensile and bending loads cause only mode I deformations. The 

mode I stress-intensity factor K for any point along the crack front was 

taken to be 

K = Si ( xa/Q )ll2. F( a/t, a/c, 4 ) 

where the subscript i denotes tension load ( i - t ) or bending load ( i - b 
) ,  a is the crack depth, c is the surface length, t is the thickness of the 

plate, Q is the parametric angle of the ellipse, and Q is the shape factor 

of the ellipse (which is equal to the square of the complete elliptic 

integral of the second kind). The half length of the bar, h, and the width 

, b, ( see Fig. 1) were chosen large enough ( h/b >2 and b/c > 5 ) to have 

negligible effects on the stress-intensity factors. Values of F, the 

boundary-correction factor, were calculated along the crack front for 

various crack shapes (a/c - 0.2 to 1 ) with a/t values of 0.05, 0.1, and 
0.2. 

and 2 .  

- 

The crack dimensions and the parametric angle are defined in Figures 1 
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Three-Dimensional Finite-Element Method 

Figure 3 shows a typical finite-element model for a surface or corner 

crack in a rectangular plate. 

obtain the stress-intensity factors for the surface- and corner-crack 

The same finite-element model was used to 

configurations. For the surface-crack configuration, symmetric boundary 

conditions were imposed on the z - 0 and x - 0 planes. Whereas, for the 

corner-crack configuration, symmetric boundary conditions were imposed only 

on the z - 0 plane. The finite-element models employed six-noded, 

pentahedron, singularity elements at the crack front and eight-noded, 

hexahedral elements elsewhere. 

using the nodal-force method [ 2 ] .  

of elements and development of the finite-element models are given in 

references 2 through 4 and are not repeated here. 

Stress-intensity factors were evaluated 

Details of the formulation of these types 

Finite-Element-Alternating Method 

This method is based on the Schwartz-Neumann alternating technique. 

The alternating method uses two basic solutions of elasticity and alternates 

between these two solutions to satisfy the required boundary conditions of 

the cracked body [6 -81 .  One of the solutions is for the stresses in an 

uncracked finite solid, and the other is for the stresses in an infinite 

solid with a crack subjected to arbitrary normal and shear tractions. 

solution for an uncracked body may be obtained in several ways, such as the 

finite- element method or the boundary-element method. In this paper, the 

three-dimensional finite-element method was used. 

The 
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The procedure that is followed in the alternating method is 

summarized in the flow chart in Figure 4 and is briefly explained here for 

mode-I problems. 

external loading using the three-dimensional finite-element method (Step 1 

in Fig.4 ) .  The finite-element solution gives the stresses everywhere in 

the solid including the region over which the crack is present (Step 2 ) .  

The normal stresses acting on the region of the crack need to be erased to 

satisfy the crack-boundary conditions. 

calculated in Step 2 are fit to an nth degree polynomial in terms of x- and 

z-coordinates ( Step 4 ). Due to the polynomial stress distributions 

obtained in Step 4, calculate the stress-intensity factor [ll] for the 

current iteration ( Step 5). Use the analytical solution of an embedded 

elliptic crack in a infinite solid subjected to the polynomial normal 

traction [ll] to obtain the normal and tangential stresses on all the 

external surfaces of the solid (Step 6 ) .  

the external surfaces obtained in Step 6 are then considered as the 

externally prescribed stresses on the uncracked solid ( Step 7 ) .  Again, 

solve the uncracked solid problem due to the surface tractions calculated in 

Step 7.  This is the start of the next iteration. Continue this iteration 

process until the normal stresses in the region of the crack are negligibly 

small or lower than a prescribed tolerance level. 

factors in the converged solution are simply the sum 

intensity factors, 

. 

First, solve the uncracked solid subjected to the given 

The opposite of the stresses 

The opposite of these stresses on 

The stress-intensity 

of the stress- 

that are computed in Step 5 ,  from all iterations. 

The key element in the alternating method is, obviously, the 

analytical solution for an infinite solid with an embedded elliptical crack 
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subjected to arbitrary normal and shear tractions. 

first obtained by Shah and Kobayashi [14] for tractions normal to the crack 

surface. However, this solution was limited to a third-degree polynomial 

function in each of the Cartesian coordinates describing the ellipse. 

Vijayakumar and Atluri [15] overcame this limitation and obtained a general 

solution of arbitrary polynomial order. Nishioka and Atluri [ll-131 

improved and implemented this general solution in a finite-element- 

alternating method and analyzed surface- and corner-cracked plates. The 

details of the method are well documented in references 11 through 13 but 

they are briefly described herein. 

Such a solution was 

In the 3-D finite-element solution, twenty-noded isoparametric 

parabolic elements were used io model the uncracked solid. Two types of 

idealizations were used. In the first type, the idealization was such that 

the elements on the z - 0 plane conform to the shape of the crack in the 
cracked solid ( see Fig. 5(a) ). Although the finite-element solution is 

for the uncracked body, such an idealization is convenient to perform the 

polynomial fit using the finite-element stresses from the elements that are 

contained in the region of the crack. 

simply translating in the z- direction the mesh on the z - 0 plane. 
The 3-D mesh is then generated by 

These 

models will be referred to as the mapped models. 

shown in Figure 5(a). 

A typical mapped model is 

In the second type, simple rectangular idealizations 

were used to model the solid. These models are referred to as the 

rectangular models. A typical rectangular model is shown in Figure 5(b). 

The alternating method requires a fit to the stresses, obtained from 
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the finite-element solution (of the uncracked body), at the crack location ( 

Step 4). These stresses are the residual pressures that need to be erased. 

For corner cracks, the residual crack-face pressure distribution, Q =, was R 

assumed to be a complete fifth-degree polynomial in x and y with 21 terms as 

shown in the Pascal's triangle below. 

1 

X Y 

XY Y2 2 X 

X 3 x2y XY2 Y3 

X 4 x3y x2y2 xy3 y4 

x5 x4y x3y2 x2y3 xy4 y5 

For surface cracks, the residual pressure 

symmetry about the y-axis. 

the terms involving odd powers of x in the fifth-degree polynomial shown in 

the Pascal's triangle. For mapped models, the residual pressure was fit 

over the complete region of the crack. 

pressure was fit over a rectangular region bounded by the semi-minor and 

semi-major axes of the crack ( see shaded region in Fig. 6 ) .  

aRz had only 12 terms because of 

These twelve terms were obtained by neglecting 

For rectangular models, the residual 

Because the continuum solution corresponds to that of an embedded 

elliptic crack in an infinite solid, it is necessary to define the residual 

stresses not only on the region of the crack but also on the "fictitious" 

portion of the crack which lies outside of the finite solid. 

Atluri [ll-131 suggested the residual-pressure distribution, through 

numerical experimentation, to be 

Nishioka and 
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R 
Q z  - 

for comer cracks, and 

R 
Q z  - 

for surface cracks. 

ORz (x,~) for x 2 0 ,  y I o 

The stresses computed at the nodal points of a 20-node element in a 

finite-element analysis can be be inaccurate [16]. Therefore, the stresses 

were evaluated at the 2x2~2 Gaussian points of an element and then were 

extrapolated to the element nodes as suggested by Hinton et a1 [16,17]. 

BBSULTS AND DISCUSSION 

In this section, the convergence of the finite-element-alternating 

method is studied. Then, the stress-intensity factors obtained from this 

method are compared to those calculated by the three-dimensional finite- 

element method. Next, the stress-intensity factors for various crack 

configurations are compared to those calculated from empirical stress- 

intensity factor equations. 

Convergence of the Finite-Element-Alternating Method 

To study the convergence of the finite-element-alternating method, an 

oblong corner crack subjected to remote uniform tension with an a/c ratio of 

0.2 was considered. The corner-crack configuration was chosen because the 
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configuration is more severe than the surface-crack configuration because of 

the existence of an additional free surface ( x = 0 plane). The a/c ratio 

of 0.2 was chosen because larger areas of the external surfaces need to be 

made stress free. 

Figure 7(a) shows a typical mapped model on the z - 0 plane for a 
shallow corner crack ( a/t = 0.2 ) with 20-noded isoparametric elements. 

This coarse model had 982 nodes and 162 elements and uses 4 elements to 

model region corresponding to the crack face. 

fine, using 8- and 12-elements to model the region corresponding to the 

crack face, see Figure 7(b) and 7(c), respectively. All three models had 9 

unequal layers of elements in the height (z) direction. For all three 

models, the stress-intensity factors converged to within one-percent 

accuracy in 5 iterations. The average residual pressure on the crack face 

normalized by the remote tension stress showed excellent convergence, as 

shown in Table 1. 

Two other models, medium and 

Figure 8 presents the normalized stress-intensity factors all along 

the crack front for the three models. 

three models agreed well with one another and indicated that even coarse 

models give accurate results. 

The stress-intensity factors from the 

Figure 9 shows the three rectangular models (on the z = 0 plane ) that 

were used in the analyses: coarse, medium and fine. The three models were 

developed such that the coarse model is a subset of the medium and the 

medium model is a subset of the fine model. All models had the same 



refinement in the height (z) direction. The coarse and medium models had 

only 4 elements, while the fine model had 9 elements in the crack region. 

The coarse model had only 5 elements in the y-direction while the medium 

model had 7 elements in the y-direction. In both cases the x-refinement was 

held constant. The fine mesh, on the other hand, had 9 elements in the y- 

direction and 7-elements in the x-direction. Therefore, the fine model had 

better refinement near the crack front. The plate was idealized with 175, 

245, and 441 elements for the coarse, medium and fine models, respectively. 

For these models, the stress-intensity factors converged to within one- 

percent accuracy in 4 iterations. The average residual pressure on the 

crack face normalized by the remote uniform tension stress, again, showed 

excellent convergence, as shown in the Table 2. 

Figure 10 presents the normalized stress-intensity factors obtained 

from the three rectangular models for a slightly different corner-crack 

configuration ( a/c - 0.2 and a/t = 0.1 ) than used for the mapped models. 

Small differences in stress-intensity factors were found between the medium 

and fine models ( about 0.5 percent). However, for larger values of 4 

considerable differences were observed between the coarse and medium models. 

This behavior was caused by inadequate refinement in the y-direction for the 

coarse model. These results suggest that accurate stress-intensity factors 

can be obtained from rectangular models with as little as 4 elements in the 

region of the crack, provided adequate refinement is used in modeling the 

free surfaces. 

Comparison of Stress-intensity Factors 
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Figures 11 and 12 comF e the stress-intensity factors for shallow 

corner cracks (a/c - 0.2) ob -.ined with the finite-element method and the 
finite-element-alternating method for a/t - 0.2 and 0.1, respectively. The 

results from the mapped and rectangular (medium) models are shown in Figure 

11, 

12. 

maximum difference was near I$  - 0 and was about 4 percent. ( Herein, 

"percent difference" is defined as the difference between the two solutions 

normalized by the largest value for that configuration. ) 

that the results from the rectangular model agreed well with those obtained 

from the finite-element method, except near I$ - 0. The maximum difference, 

however, was about 6 percent. 

while the results from a rectangular (medium) model are shown in Figure 

The results shown from both analyses in Figure 11 agreed well. The 

Figure 12 shows 

Figures 13 and 14 present comparisons of stress-intensity factors for 

a nearly semi-circular surface crack and nearly quarter-circular corner 

crack, respectively, obtained with the finite-element method and the finite- 

element-alternating method. Note that the finite-element-alternating method 

cannot be used for cracks with an a/c ratio of unity because the elliptic 

functions have indefinite forms. From numerical experimentation the 

limiting values of the a/c ratio appear to be 0 . 9 8  for embedded cracks, 

0.92 for surface cracks, and 0 . 8 5  for corner cracks. Thus, an a/c value 

of 0 . 8 5  was chosen for both crack configurations. These figures show 

reasonable agreement between the two methods for both the surface- and 

corner-crack configurations. The largest discrepancy occurred where the 

crack front intersects a free surface (about 5 percent). 
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Computational Effort of the Finite-Element-Alternating Method 

A study of the computational time for the alternating method indicated 

that assembling and decomposing the finite-element stiffness matrix was the 

most dominant computational effort. 

percent of the time required to assemble and decompose the stiffness 

matrix. For the configurations studied, convergence to less than one 

percent error bound in the stress-intensity factors was achieved in 4 or 5 

iterations. The results shown in Figure 12 suggest that rectangular models 

provide accurate solutions and these models are easier to generate than the 

mapped models. 

adequate refinement is made along each coordinate axis. 

single rectangular fine mesh can be used to analyze a wide range of crack 

shapes and sizes without repeated assembly and decomposition of the 

stiffness matrix. For example, the computational time required to analyze 

three crack shapes (a/c) and three crack sizes (a/t), or 9 crack 

configurations, using the finite-element-alternating method was 630 CPU 

seconds (VPS-32 Computer). The conventional finite-element method requires 

nine separate computer runs. 

400 CPU seconds (VPS-32 Computer). Therefore, 3600 CPU seconds are required 

for the finite-element method. 

Each iteration was approximately one 

The rectangular models give accurate results provided that 

Most importantly, a 

The computational time -for one run was about 

Stress-Intensity Factors for Small Cracks 

Stress-intensity factor equations [9,10] have been developed by using 

the stress-intensity factors obtained from the finite-element method, 

engineering judgement, and extrapolations. To evaluate the equations for 

a/t < 0.2, therefore, it is logical that the values from the equation be 
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compared with those from the finite-element method. Furthermore, the 

differences between the results from the finite-element-alternating method 

and the finite-element method with singularity elements were about 3 percent 

for most of the crack front. Therefore, stress-intensity factors were 

calculated for various crack shapes ( a/c - 0.2 to 1) with a/t ratios 

ranging from 0.05 to 0.2 by using the finite-element method. A typical 

stress-intensity factor distribution for a corner crack with a/c - 0.4, 
subjected to remote uniform tension loading, for various a/t ratios are 

shown in Figure 15. For remote tensile loading and all a/c ratios 

considered, smaller a/t values always gave slightly lower stress-intensity 

factors all along the crack front. 

intensity factors from an a/t value of 0.2 to 0.05 was less than 3 percent. 

For remote bending loading and all a/c ratios, smaller values of 

higher stress-intensity factors all along the crack front. This is 

expected because the crack experiences a more uniform stress gradient as a/t 

approaches zero. At a/t - 0, the bending stress-intensity correction 
factors (F) are exactly equal to those due to remote tension. At a/t - 
0 . 0 5 ,  the maximum differences between the stress-intensity correction 

factors at the deepest point of the crack due to remote tension and remote 

bending loading are about 10 percent. 

However, the difference in stress- 

a/t gave 

The present results were also compared to the empirical stress- 

intensity factor equations proposed by Newman and Raju [9,10]. 

previously mentioned, the empirical equations were obtained by a curve 

fitting procedure to the finite-element results in the range 0.2 I a/t 5 0.8 

for various crack shapes. In developing the empirical equations, some 

engineering judgment and extrapolations were used for the limiting solution 

As 
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for a/t - 0. 
calculations from the empirical equations in Figures 16 through 19 for 

surface or corner cracks. For surface cracks, the comparisons were made at 

the maximum depth point ( 24/x - 1 ) and near the free surface ( 24/x - 
0.125 ) for the surface crack. At the free surface ( 24/n - 0 ) ,  the 

finite-element results are influenced by the boundary-layer effect and the 

results are mesh dependent (21. For corner cracks, the comparisons are also 

made near the two free surfaces ( 24/n - 0.125 and 0.875 ) .  The results 

from the empirical equations ( solid curves ) are generally within about 5 

percent of the finite-element results for the range of a/c ratios 

considered. 

The present finite-element results are compared with 

From the finite element results, asymptotic stress-intensity 

correction values at a/t - 0 were computed by fitting a quadratic equation 
in terms of a/t to the results for a/t values of 0.2, 0.1, 0.05. These 

asymptotic values ( average of the tension and bending loads) are shown in 

Table 3. 

empirical equations. 

the extrapolated finite-element results at a/t - 0 agreed well ( within 3 

percent ) .  

approaches zero. 

These values are also compared with those obtained from the 

The asymptotic values from the empirical equation and 

Thus, the empirical equations have an accurate limit as a/t 

CONCIIJDING BEHARKS 

Stress-intensity factors for shallow surface and corner cracks in 

rectangular plates were obtained using the three-dimensional finite-element 

and finite-element-alternating methods. The plates were subjected to remote 
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tension and remote out-of-plane bending loads. A wide range of crack shapes 

were considered (a/c - 0.2 to 1 ) .  The crack-depth-to-plate-thickness (a/t) 

ratios ranged from 0.05 to 0.2. 

The performance of the finite-element-alternat-rig method was studied 

by considering two types of models: mapped and rectangular models. The 

mapped models used idealizations that conform to the shape of the crack 

while the rectangular models used a rectanguls.. idealization throughout the 

solid. The stress-intensity factors obtained by either model showed 

excellent convergence and showed that about 4 to 8 elements are sufficient 

to model the crack region. The stress-intensity factors obtained from the 

finite- element-alternating method agreed well with those obtained the 

finite-element method with singularity elements ( maximum difference was 

about 5 percent.) 

finite-element-alternating method showed that a single rectangular 

idealization could be used to analyze several crack configurations. The 

method produced accurate stress-intensity factors at a lower cost compared 

to the conventional finite-element method. 

The study of the computational effort involved in the 

For remote tensile loading and all crack shapes (crack depth-to- 

surface-length ratios, a/c ) considered, lower values of the crack-depth-to- 

plate-thickness (a/t) ratios gave lower stress.-intensity factors for 

surface- and corner-cracked plates. However, the largest difference between 

the stress-intensity factors for a/t values ranging from 0.05 to 0.2 was 

only about 5 percent. 

equal to the asymptotic values at a/t - 0. 
The results at an a/t ratio of 0.05 were very nearly 

For remote bending loading and 
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all crack shapes (a/c), lower values of a/t gave higher stress-intensity 

factors all along the crack f r w t .  This was expected because the crack 

experiences a more uniform strr;s gradient as a/t approaches zero. The 

asymptotic limits of the stress-intensity factors ( as a/t approaches zero ) 

given the empirical equations proposed by Newman and Raju were within 3 

percent of the limits obtained by the finite-element method. 

The stress-intensity factors given in this paper should be useful in 

predicting crack-growth rates and fracture strengths, in designing 

structural components, and in establishing inspection intervals for surface- 

and corner-cracked components. 
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Table 1.- Average normalized residual pressure on the crack face from 
mapped models. 

Iteration Finite-element model 
Number Coarse Medium Fine 

0.975 0.975 0.975 
0.215 0.201 0.199 
0.034 0.044 0.043 
0.013 0.017 0.017 
0.002 0.003 0.003 

Table 2 . -  Average normalized residual pressure on the crack face from the 
rectangular models. 

Iteration Finite-element model 
Number Coarse Medium Fine 

1 
2 
3 
4 

1.273 1.273 1.273 
0.144 0.171 0.171 
0.020 0.027 0.027 
0.006 0.007 0.008 
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Table. 3: Comparison of asymptotic limits of the normalized stress- 
intensity factors, F, as a/t approaches zero, obtained by the 
finite-element analysis (average value of tension and bending 
loading) and the empirical equation. 

K = Si (ra/Q)ll2 F 

Surface Cracks 

2 Q / x  = 0.125 2 4/r - 1.0 

0.2 

0.4 

0.6 

1.0 

~~ 

a/c 
Finite-element Empirical Finite-element Empirical 
Analysis Equation Analysis Equation 

0.621 0.623 1.094 1.112 

0.764 0.771 1.073 1.094 

1.076 0.896 0.902 1.055 

1.119 1.107 1.022 1.040 

Corner Cracks 

2 Q/r = 0.125 2 Q/r - 0.875 

0.2 0.618 0.588 1.095 1.108 

0.4 0.752 0.736 1.085 1.104 

0.6 0.886 0.871 1.090 1.100 

1.0 1.104 1.094 1.104 1.094 
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Figure 4.- Flow chart for the fini te-element-alternating method. 
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(a) Mapped model I 
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(b) Rectangular model, 
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Figure 6 . -  Crack-surface area used in residual pressure ( oz)  f i t .  
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(a) Coarse mesh, 

(b)  Medium mesh, 

L 
I 

- 

( c )  Fine mesh, 

Figure 7.- Mapped models used in f i n i  te-element-a1 ternating method. 
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(a) Coarse mesh, 

(b) Medium mesh, 
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Figure 9.- 

( c )  Fine mesh, 

Rectangular models used in the fini te-element-a1 ternating 
met hod. 
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