20,334 research outputs found

    An Analysis of the Rayleigh-Stokes problem for a Generalized Second-Grade Fluid

    Get PDF
    We study the Rayleigh-Stokes problem for a generalized second-grade fluid which involves a Riemann-Liouville fractional derivative in time, and present an analysis of the problem in the continuous, space semidiscrete and fully discrete formulations. We establish the Sobolev regularity of the homogeneous problem for both smooth and nonsmooth initial data vv, including v∈L2(Ω)v\in L^2(\Omega). A space semidiscrete Galerkin scheme using continuous piecewise linear finite elements is developed, and optimal with respect to initial data regularity error estimates for the finite element approximations are derived. Further, two fully discrete schemes based on the backward Euler method and second-order backward difference method and the related convolution quadrature are developed, and optimal error estimates are derived for the fully discrete approximations for both smooth and nonsmooth initial data. Numerical results for one- and two-dimensional examples with smooth and nonsmooth initial data are presented to illustrate the efficiency of the method, and to verify the convergence theory.Comment: 23 pp, 4 figures. The error analysis of the fully discrete scheme is shortene

    Optimal Collocation Nodes for Fractional Derivative Operators

    Get PDF
    Spectral discretizations of fractional derivative operators are examined, where the approximation basis is related to the set of Jacobi polynomials. The pseudo-spectral method is implemented by assuming that the grid, used to represent the function to be differentiated, may not be coincident with the collocation grid. The new option opens the way to the analysis of alternative techniques and the search of optimal distributions of collocation nodes, based on the operator to be approximated. Once the initial representation grid has been chosen, indications on how to recover the collocation grid are provided, with the aim of enlarging the dimension of the approximation space. As a results of this process, performances are improved. Applications to fractional type advection-diffusion equations, and comparisons in terms of accuracy and efficiency are made. As shown in the analysis, special choices of the nodes can also suggest tricks to speed up computations

    A Class of Second Order Difference Approximation for Solving Space Fractional Diffusion Equations

    Full text link
    A class of second order approximations, called the weighted and shifted Gr\"{u}nwald difference operators, are proposed for Riemann-Liouville fractional derivatives, with their effective applications to numerically solving space fractional diffusion equations in one and two dimensions. The stability and convergence of our difference schemes for space fractional diffusion equations with constant coefficients in one and two dimensions are theoretically established. Several numerical examples are implemented to testify the efficiency of the numerical schemes and confirm the convergence order, and the numerical results for variable coefficients problem are also presented.Comment: 24 Page

    Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview

    Get PDF
    Over the past few decades, there has been substantial interest in evolution equations that involving a fractional-order derivative of order α∈(0,1)\alpha\in(0,1) in time, due to their many successful applications in engineering, physics, biology and finance. Thus, it is of paramount importance to develop and to analyze efficient and accurate numerical methods for reliably simulating such models, and the literature on the topic is vast and fast growing. The present paper gives a concise overview on numerical schemes for the subdiffusion model with nonsmooth problem data, which are important for the numerical analysis of many problems arising in optimal control, inverse problems and stochastic analysis. We focus on the following aspects of the subdiffusion model: regularity theory, Galerkin finite element discretization in space, time-stepping schemes (including convolution quadrature and L1 type schemes), and space-time variational formulations, and compare the results with that for standard parabolic problems. Further, these aspects are showcased with illustrative numerical experiments and complemented with perspectives and pointers to relevant literature.Comment: 24 pages, 3 figure
    • …
    corecore