9,872 research outputs found

    The Bottom-Up Position Tree Automaton, the Father Automaton and their Compact Versions

    Full text link
    The conversion of a given regular tree expression into a tree automaton has been widely studied. However, classical interpretations are based upon a Top-Down interpretation of tree automata. In this paper, we propose new constructions based on the Gluskov's one and on the one of Ilie and Yu one using a Bottom-Up interpretation. One of the main goals of this technique is to consider as a next step the links with deterministic recognizers, consideration that cannot be performed with classical Top-Down approaches. Furthermore, we exhibit a method to factorize transitions of tree automata and show that this technique is particularly interesting for these constructions, by considering natural factorizations due to the structure of regular expression.Comment: extended version of a paper accepted at CIAA 201

    Bottom-up automata on data trees and vertical XPath

    Get PDF
    A data tree is a finite tree whose every node carries a label from a finite alphabet and a datum from some infinite domain. We introduce a new model of automata over unranked data trees with a decidable emptiness problem. It is essentially a bottom-up alternating automaton with one register that can store one data value and can be used to perform equality tests with the data values occurring within the subtree of the current node. We show that it captures the expressive power of the vertical fragment of XPath - containing the child, descendant, parent and ancestor axes - obtaining thus a decision procedure for its satisfiability problem

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees
    corecore