2,917 research outputs found

    Interference Alignment for Partially Connected MIMO Cellular Networks

    Full text link
    In this paper, we propose an iterative interference alignment (IA) algorithm for MIMO cellular networks with partial connectivity, which is induced by heterogeneous path losses and spatial correlation. Such systems impose several key technical challenges in the IA algorithm design, namely the overlapping between the direct and interfering links due to the MIMO cellular topology as well as how to exploit the partial connectivity. We shall address these challenges and propose a three stage IA algorithm. As illustration, we analyze the achievable degree of freedom (DoF) of the proposed algorithm for a symmetric partially connected MIMO cellular network. We show that there is significant DoF gain compared with conventional IA algorithms due to partial connectivity. The derived DoF bound is also backward compatible with that achieved on fully connected K-pair MIMO interference channels.Comment: Submitted to IEEE Transactions on Signal Processing, accepte

    Improved Rate-Energy Trade-off For SWIPT Using Chordal Distance Decomposition In Interference Alignment Networks

    Get PDF
    This paper investigates the simultaneous wireless information and power transfer (SWIPT) precoding scheme for K-user multiple-input-multiple-output (MIMO) interference channels (IC), for which interference alignment (IA) schemes provide optimal precoders to achieve full degrees-of-freedom (DoF) gain. However, harvesting RF energy simultaneously reduces the achievable DoFs. To study a trade-off between harvested energy and sum rate, the transceiver design problem is suboptimally formulated in literature via convex relaxations, which is still computationally intensive, especially for battery limited nodes running on harvested energy. In this paper, we propose a systematic method using chordal distance (CD) decomposition to obtain the balanced precoding, which improves the trade-off. Analysis shows that given the nonnegative value of CD, the achieved harvested energy for the proposed precoder is higher than that for perfect IA precoder. Moreover, energy constraints can be achieved, while maintaining a constant rate loss without losing DoFs via tuning the CD value and splitting factor. Simulation results verify the analysis and add that the IA schemes based on max-SINR or mean-squared error are better suited for SWIPT maximization than subspace or leakage minimization methods

    Rate-Energy Balanced Precoding Design for SWIPT based Two-Way Relay Systems

    Get PDF
    Simultaneous wireless information and power transfer (SWIPT) technique is a popular strategy to convey both information and RF energy for harvesting at receivers. In this regard, we consider a two-way relay system with multiple users and a multi-antenna relay employing SWIPT strategy, where splitting the received signal leads to a rate-energy trade-off. In literature, the works on transceiver design have been studied using computationally intensive and suboptimal convex relaxation based schemes. In this paper, we study the balanced precoder design using chordal distance (CD) decomposition, which incurs much lower complexity, and is flexible to dynamic energy requirements. It is analyzed that given a non-negative value of CD, the achieved harvested energy for the proposed balanced precoder is higher than that for the perfect interference alignment (IA) precoder. The corresponding loss in sum rates is also analyzed via an upper bound. Simulation results add that the IA schemes based on mean-squared error are better suited for the SWIPT maximization than the subspace alignment-based methods.Comment: arXiv admin note: text overlap with arXiv:2101.1216

    On the Fundamental Feedback-vs-Performance Tradeoff over the MISO-BC with Imperfect and Delayed CSIT

    Full text link
    This work considers the multiuser multiple-input single-output (MISO) broadcast channel (BC), where a transmitter with M antennas transmits information to K single-antenna users, and where - as expected - the quality and timeliness of channel state information at the transmitter (CSIT) is imperfect. Motivated by the fundamental question of how much feedback is necessary to achieve a certain performance, this work seeks to establish bounds on the tradeoff between degrees-of-freedom (DoF) performance and CSIT feedback quality. Specifically, this work provides a novel DoF region outer bound for the general K-user MISO BC with partial current CSIT, which naturally bridges the gap between the case of having no current CSIT (only delayed CSIT, or no CSIT) and the case with full CSIT. The work then characterizes the minimum CSIT feedback that is necessary for any point of the sum DoF, which is optimal for the case with M >= K, and the case with M=2, K=3.Comment: An initial version of this paper has been reported as Research Report No. RR-12-275 at EURECOM, December 7, 2012. This paper was submitted in part to the ISIT 201

    Precoded Chebyshev-NLMS based pre-distorter for nonlinear LED compensation in NOMA-VLC

    Get PDF
    Visible light communication (VLC) is one of the main technologies driving the future 5G communication systems due to its ability to support high data rates with low power consumption, thereby facilitating high speed green communications. To further increase the capacity of VLC systems, a technique called non-orthogonal multiple access (NOMA) has been suggested to cater to increasing demand for bandwidth, whereby users' signals are superimposed prior to transmission and detected at each user equipment using successive interference cancellation (SIC). Some recent results on NOMA exist which greatly enhance the achievable capacity as compared to orthogonal multiple access techniques. However, one of the performance-limiting factors affecting VLC systems is the nonlinear characteristics of a light emitting diode (LED). This paper considers the nonlinear LED characteristics in the design of pre-distorter for cognitive radio inspired NOMA in VLC, and proposes singular value decomposition based Chebyshev precoding to improve performance of nonlinear multiple-input multiple output NOMA-VLC. A novel and generalized power allocation strategy is also derived in this work, which is valid even in scenarios when users experience similar channels. Additionally, in this work, analytical upper bounds for the bit error rate of the proposed detector are derived for square MM-quadrature amplitude modulation.Comment: R. Mitra and V. Bhatia are with Indian Institute of Technology Indore, Indore-453552, India, Email:[email protected], [email protected]. This work was submitted to IEEE Transactions on Communications on October 26, 2016, decisioned on March 3, 2017, and revised on April 25, 2017, and is currently under review in IEEE Transactions on Communication
    corecore