577 research outputs found

    Performance optimization of lateral-mode thin-film piezoelectric-on-substrate resonant systems

    Get PDF
    The main focus of this dissertation is to characterize and improve the performance of thin-film piezoelectric-on-substrate (TPoS) lateral-mode resonators and filters. TPoS is a class of piezoelectric MEMS devices which benefits from the high coupling coefficient of the piezoelectric transduction mechanism while taking advantage of superior acoustic properties of a substrate. The use of lateral-mode TPoS designs allows for fabrication of dispersed-frequency filters on a single substrate, thus significantly reducing the size and manufacturing cost of devices. TPoS filters also offer a lower temperature coefficient of frequency, and better power handling capability compared to rival technologies all in a very small footprint. Design and fabrication process of the TPoS devices is discussed. Both silicon and diamond substrates are utilized for fabrication of TPoS devices and results are compared. Specifically, the superior acoustic properties of nanocrystalline diamond in scaling the frequency and energy density of the resonators is highlighted in comparison with silicon. The performance of TPoS devices in a variety of applications is reported. These applications include lateral-mode TPoS filters with record low IL values (as low as 2dB) and fractional bandwidth up to 1%, impedance transformers, very low phase noise oscillators, and passive wireless temperature sensors

    Fundamental Antisymmetric Mode Acoustic Resonator in Periodically Poled Piezoelectric Film Lithium Niobate

    Full text link
    Radio frequency (RF) acoustic resonators have long been used for signal processing and sensing. Devices that integrate acoustic resonators benefit from their slow phase velocity (vp), in the order of 3 to 10 km/s, which allows miniaturization of the device. Regarding the subject of small form factor, acoustic resonators that operate at the so-called fundamental antisymmetric mode (A0), feature even slower vp (1 to 3 km/s), which allows for smaller devices. This work reports the design and fabrication of A0 mode resonators leveraging the advantages of periodically poled piezoelectricity (P3F) lithium niobate, which includes a pair of piezoelectric layers with opposite polarizations to mitigate the charge cancellation arising from opposite stress of A0 in the top and bottom piezoelectric layers. The fabricated device shows a quality factor (Q) of 800 and an electromechanical coupling (k2) of 3.29, resulting in a high figure of merit (FoM, Q times k2) of 26.3 at the resonant frequency of 294 MHz, demonstrating the first efficient A0 device in P3F platforms. The proposed A0 platform could enable miniature signal processing, sensing, and ultrasound transducer applications upon optimization.Comment: 4 pages, 6 figures, accepted by IEEE IUS 202

    Niobate-on-Niobate Resonators with Aluminum Electrodes

    Full text link
    In this work, we have successfully engineered and examined suspended laterally vibrating resonators (LVRs) on a lithium niobate thin film on lithium niobate carrier wafer (LN-on-LN) platform, powered by aluminum interdigital transducers (IDTs). Unlike the lithium niobate-on-silicon system, the LN-on-LN platform delivers a stress-neutral lithium niobate thin film exhibiting the quality of bulk single crystal. The creation of these aluminum-IDTs-driven LN-on-LN resonators was achieved utilizing cutting-edge vapor-HF release techniques. Our testing revealed both symmetric (S0) and sheer horizontal (SH0) lateral vibrations in the LVR resonators. The resonators displayed a quality factor (Q) ranging between 500 and 2600, and coupling coefficient keff2k_{eff}^2 up to 13.9%. The figure of merit (FOM) keff2×Qk_{eff}^2 \times Q can reach as high as 294. The yield of these devices proved to be impressively reliable. Remarkably, our LN-on-LN devices demonstrated a consistently stable temperature coefficient of frequency (TCF) and good power handling. Given the low thermal conductivity of lithium niobate, our LN-on-LN technology presents promising potential for future applications such as highly sensitive uncooled sensors using monolithic chip integrated resonator arrays

    Reconfigurable Bulk Acoustic Wave Resonators and Filters Employing Electric-field-induced Piezoelectricity and Negative Piezoelectricity for 5G

    Full text link
    The ever-expanding wireless communications and sensing are influencing every aspect of human life. With the persistent demand for higher data capacity and recent advancements in wireless technologies, the design of current radio frequency front-end circuitry in communication devices calls for transformative changes. Frequency band proliferation is the biggest contributor to the added RF front-ends complexity in the design of future radios. To operate at various frequency bands, a complex combination of switches and filters is used in mobile devices, and the number of these frequency selective components in each device is expected to exceed 100 with the advent of 5th generation (5G) communication networks. Acoustic wave filters based on piezoelectric materials are the primary technologies employed in current communication systems, including mobile phones. Alternatively, the integration of multifunctional ferroelectric materials into reconfigurable frequency selective components promises reduced complexity, diminished size, and high performance for future radios, enabling them to support 5G wireless technologies and beyond. A promising reconfigurable bulk acoustic wave technology, employing electric-field-induced piezoelectricity and negative piezoelectricity in ferroelectrics, is presented in this dissertation. Successful implementation of ferroelectric filters would eliminate the need for external switcheplexers in the RF front-ends and reduce the number of required filters, leading to a significant reduction in size, cost, and complexity. Contributions of this work are categorized into three major parts. In the first part, an intrinsically switchable thin film bulk acoustic wave resonator (FBAR) based on ferroelectric BST with the highest figure of merit (i.e., Q_m×K_t^2) in the literature is presented. The BST FBARs are then employed to design intrinsically switchable filters with the lowest insertion loss to date. Such filters combine filtering and switching functionalities onto a single device, eliminating the need for external switches in RF front-ends. The second part of this work focuses on the development of frequency and bandwidth reconfigurable filters based on BST FBARs. The first switchless acoustic wave filter bank is presented in chapter 3, demonstrating the capability of BST FBARs in simplifying future agile radios. Next, a novel bandwidth reconfigurable filter based on BST FBARs is introduced in chapter 4, where the idea is experimentally validated with multiple design examples. Finally, through rigorous mathematical analysis and experimental validation, it has been demonstrated that a dynamic ‘non-uniform piezoelectric coefficient’ created within a composite structure made up of multi-layers of ferroelectrics allows the selective excitation of different mechanical Eigenmodes with a constant electromechanical coupling coefficient. Such technology overcomes the fundamental limitations associated with the electromechanical coupling coefficient of harmonic resonances in bulk acoustic wave resonators. To create ‘non-uniform piezoelectric coefficients’ in such structures, ferroelectrics’ electric-field-induced piezoelectricity and negative piezoelectricity has been exploited. This innovative technology provides a fundamentally new approach and a framework for synthesizing programmable frequency selective components, which leads to transformative advances in wireless systems’ front-end architecture. As part of the future direction, it is suggested that the multilayer structure presented in this section to be further studies as part of a new acoustic wave resonator design, which: (a) is capable of operation at a wide frequency range up to mm-wave frequencies designated for 5G (b). Such a structure has the potential to overcome the fundamental limitation of acoustic resonator’s ever-decreasing electromechanical coupling factors (Kt2) as their frequency of operation increases.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163011/1/milad_1.pd

    Acoustic Bragg Reflectors for Q-Enhancement of Unreleased MEMS Resonators

    Get PDF
    This work presents the design of acoustic Bragg reflectors (ABRs) for unreleased MEMS resonators through analysis and simulation. Two of the greatest challenges to the successful implementation of MEMS are those of packaging and integration with integrated circuits. Development of unreleased RF MEMS resonators at the transistor level of the CMOS stack will enable direct integration into front-end-of-line (FEOL) processing, making these devices an attractive choice for on-chip signal generation and signal processing. The use of ABRs in unreleased resonators reduces spurious modes while maintaining high quality factors. Analysis on unreleased resonators using ABRs covers design principles, effects of fabrication variation, and comparison to released devices. Additionally, ABR-based unreleased resonators are compared with unreleased resonators enhanced using phononic crystals, showing order of magnitude higher quality factor (Q) for the ABR-based devices.United States. Defense Advanced Research Projects Agency (DARPA Young Faculty Award)Semiconductor Research Corporation (Center for Materials, Structures and Devices (MSD)

    Optimization and design of radio frequency piezoelectric MEMS resonators

    Get PDF
    Radio frequency (RF) microelectromechanical system (MEMS) resonators employing Lamb waves propagating in piezoelectric thin films have recently attracted much attention since they combine the advantages of the bulk acoustic wave (BAW) and surface acoustic wave (SAW) technologies: high phase velocity and multiple frequencies on a single chip. In particular, aluminum nitride (AlN) resonators based on fundamental symmetric (S0) Lamb mode have shown great promise because they can offer high phase velocities (10,000 m/s), low dispersive phase velocity characteristic, small temperature-induced frequency drift, low motional resistance, and monolithic integration compatibility with complementary metal–oxide–semiconductor (CMOS). However, there are still a few outstanding technical challenges, including spurious modes suppression, quality factor (Q) enhancement, frequency scalability, and electromechanical coupling improvement. These issues obstruct the wide deployment and commercialization of AlN Lamb mode resonators. This dissertation presents comprehensive investigations and solutions to these issues. This thesis is organized as follows: Chapter 1 gives a brief introduction of the basics on piezoelectric MEMS resonators and their promising applications. Chapter 2 first investigates the various available Lamb wave modes in AlN and then identifies the S0 mode as the promising resonator solution to overcome several challenges associated with SOA. Chapter 2 also discusses several outstanding challenges with S0 devices, including spurious mode suppression, Q enhancement, scaling resonant frequency, and enlarging fractional bandwidth. In response, Chapters 3-7 address these outstanding challenges by developing new designs and models, resorting to new acoustic mode, and incorporating new piezoelectric material. More specifically, Chapter 3 proposes two techniques to suppress the spurious modes in the responses of S0 resonators, namely mode conversion and mode shifting. Chapter 4 address the challenge of a conventionally vague question of reflection at the interface between released and unreleased regions in S0 resonators, and then demonstrates Q enhanced resonators with defined released regions achieved by a sandbox process. Chapter 5 first characterizes the S1 Lamb mode and optimizes its resonator configuration. A high-frequency S1 resonator at 3.5 GHz with a coupling of 3.5% is fabricated and demonstrated. Chapter 6 presents a hybrid filtering topology with a mode conversion AlN S0 resonator and lumped elements for widening the bandwidths of resonator-based filters. Chapter 7 proposes lithium niobate (LiNbO3) multilayered resonators with large electromechanical coupling, structure robustness, and good temperature stability. The analysis of Bragg reflectors, resonator simulation, stress control, fabrication, and measurements are covered in this chapter

    Influence of Materials and Design Parameters on Zinc Oxide Surface Acoustic Devices

    Get PDF
    This thesis presents research into Zinc Oxide (ZnO) based resonators to include Width Extensional Mode (WEM), Length Extensional Mode (LEM), and Surface Acoustic Wave (SAW) devices. The design and operation of ZnO based SAW devices are investigated further to characterize design parameters and operating modes. Their design, fabrication, and results are discussed in detail. SAW device testing in conjunction with X-Ray Diffractometry (XRD) and Atomic Force Microscopy (AFM) are utilized to characterize ZnO and its deposition parameters on a variety of different substrates and interlayers, with different deposition temperatures and annealing parameters. These substrates include silicon, silicon oxide-on-silicon, and sapphire wafers with interlayers including titanium, tungsten, and silicon oxide. Fabrication methods are discussed to explain all processing steps associated with SAW and released contour mode resonators. The SAW devices in this research test different design parameters to establish better reflector design spacing for higher frequency Sezawa wave modes. The characterization and design of ZnO based SAW devices establishes the potential for prototyping high frequency SAW designs using standard lithography techniques. These devices are desired for space-based operations for use in GPS filters, signal processing, and sensing in satellites and space vehicles

    Ferroelectric-on-Silicon Switchable Bulk Acoustic Wave Resonators and Filters for RF Applications.

    Full text link
    Todays’ multi-band mobile phones’ RF front ends require separate transceivers for each frequency band. Future wireless mobile devices are expected to accommodate a larger number of frequency bands; therefore using the existing transceiver configurations becomes prohibitive. One of the key RF components in wireless devices is the image reject and band-selection filter. Today’s multi-band mobile phones use bulk acoustic wave (BAW) filters in conjunction with solid-state or MEMS-based RF switches for selecting the frequency band of operation. This approach results in very complex circuits. As number of frequency bands increases, ferroelectric BST, operating at its paraelectric phase, has recently been utilized in designing intrinsically switchable BAW resonators and filters due to its voltage induced piezoelectricity. The intrinsically switchable BAW resonators and filters are suitable for designing compact multiband and frequency agile transceivers as they can be switched on and off by simply controlling the dc bias voltage across the ferroelectric layer instead of using separate MEMS or solid-state based RF switches. In this thesis, composite ferroelectric resonators are studied to improve the Q of intrinsically switchable BAW resonators. Intrinsically switchable BAW resonators with record Q values based on ferroelectric-on-silicon composite structures have been demonstrated. In addition, two types of intrinsically switchable BAW filters using ferroelectric-on-silicon composite structure: electrically connected filters and laterally coupled acoustic filters are studied. In the first part of this thesis, the design, fabrication and measurement results for high-Q composite film bulk acoustic resonators (FBARs) are discussed. Subsequently, an intrinsically switchable electrically connected filter based on ferroelectric-on-silicon composite FBARs is presented. Finally, an intrinsically switchable laterally coupled acoustic filter with a ferroelectric-on-silicon composite structure is presented. The reported laterally coupled acoustic filter represents the first demonstration of a BST based intrinsically switchable acoustically coupled filter.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107289/1/siss_1.pd

    Piezoelectric MEMS Disk Resonator and Filter Based on Epitaxial Al0.3Ga0.7As Films

    Get PDF
    In this work, a new class of disk, contour-mode, piezoelectric, micromechanical resonators based on single-crystal Al0.3Ga0.7As films has been developed. The shape of the disk resonator is based on the velocity propagation profile of the elastic wave in the plane of the piezoelectric film, with lateral dimensions scaled to the half wave length of the desired resonance frequency. The resonators are designed with supports to emulate free-free boundary conditions. Finite element analysis (FEA) model for this resonator is created in Ansys software, the simulation results validate the design concept. The performance parameters extracted from the FEA models show that this novel disk resonator outperforms the beam type counterpart. A unique 7-mask MEMS fabrication process based on the epitaxial, heterostructure Al0.3Ga0.7As films has been developed and successfully implemented to produce the prototypes of the new disk resonators. Fully experimental characterizations on the prototypes were conducted and the measured results from the prototypes are: a Q factor of 7031 at 30.2 MHz with 1.11 kΩ intrinsic motional resistance; a Q factor of 6515 at 40.8 MHz with 1.26 kΩ intrinsic motional resistance; a Q factor of 3300 at 62.3 MHz with 2.43 kΩ intrinsic motional resistance. The measured power handling level is about 1.6 mW, which is the highest power handling capability to date. These measured performance aspects are better than that of the previously developed beam type resonators. Based on this new disk resonator, two novel, two-port resonators (i.e., filters) designs have been introduced. The FEA models of both designs were created and the simulation results verify these design concepts. Equivalent circuit models for these filters were established with the parameters obtained from the FEA models. Furthermore, the optimal electrode configuration to provide minimum insertion loss is obtained through the analytical transadmittance function of the equivalent circuit. The prototypes of the filters were successfully fabricated. Measured results on these prototypes are summarized here: for the circular patter design, the best insertion loss is -45.7 dB at 37.8 MHz with quality factor 4372; for the half plane electrode design, the best insertion loss is -42.8 dB at 38.1 MHz with quality factor 3632
    • …
    corecore