33 research outputs found

    An accurate fingerprint reference point determination method based on curvature estimation of separated ridges

    Get PDF
    This paper presents an effective method for the detection of a fingerprint’s reference point by analyzing fingerprint ridges’ curvatures. The proposed approach is a multi-stage system. The first step extracts the fingerprint ridges from an image and transforms them into chains of discrete points. In the second step, the obtained chains of points are processed by a dedicated algorithm to detect corners and other points of highest curvature on their planar surface. In a series of experiments we demonstrate that the proposed method based on this algorithm allows effective determination of fingerprint reference points. Furthermore, the proposed method is relatively simple and achieves better results when compared with the approaches known from the literature. The reference point detection experiments were conducted using publicly available fingerprint databases FVC2000, FVC2002, FVC2004 and NIST

    Enhanced Ridge Direction for the Estimation of Fingerprint Orientation Fields

    Get PDF
    An accurate estimation of fingerprint orientation fields is an important step in the fingerprint classification process. Gradient-based approaches are often used  for estimating orientation fields of ridge structures but this method is susceptible to noise. Enhancement of ridge direction improves the structure of orientation fields and increases the number of correct features thereby conducing the overall performance of the classification process. In this paper, we propose an algorithm to improve orientation field structures using variance of gradient. That algorithm have two steps; firstly, estimation of fingerprint orientation fields using gradient-based method, and finally, enhancement of ridge direction using minimum variance of the cross center block direction. We have used standard fingerprint database NIST-DB14 for testing of proposed algorithm to verify the degree of efficiency of algorithm. The experiment results suggest that our enhanced algorithm achieves visibly better noise resistance with other methods

    A digital circuit for extracting singular points from fingerprint images

    Get PDF
    Since singular point extraction plays an important role in many fingerprint recognition systems, a digital circuit to implement such processing is presented herein. A novel algorithm that combines hardware efficiency with precision in the extraction of the points has been developed. The circuit architecture contains three main building blocks to carry out the three main stages of the algorithm: extraction of a partitioned directional image, smoothing, and searching for the patterns associated with singular points. The circuit processes the pixels in a serial way, following a pipeline scheme and executing in parallel several operations. The design flow employed has been supported by CAD tools. It starts with high-level descriptions and ends with the hardware prototyping into a FPGA from Xilinx

    A technique to improve ridge flows of fingerprint orientation fields estimation

    Get PDF
    An accurate estimated fingerprint orientation fields is a significant step for detection of singular points. Gradient-based methods are frequently used for estimating orientation fields but those methods are sensitive to noise. Fingerprints that perfect quality are seldom. They may be corrupted and degraded due to impression conditions or variations on skin. Enhancement of ridge flows improved the structure of orientation fields and hence increased the number of true singular points thereby conducting the overall performance of the classification process. In this paper, we provided discussion on the technique and implementation to improve local ridge flows of fingerprint orientation fields. That main technique have four steps; firstly, fingerprint segmentation; secondly, identification of noise areas and marking; thirdly, estimation of fingerprint orientation fields, and finally, enhancement of ridge flows using minimum variance of the cross centre block direction in squared gradients. A standard fingerprint database is used for testing of proposed technique to verify the tier of effectivity of algorithm. The experimental results suggest that our enhanced algorithm achieves visibly better ridge flows compare to other methods
    corecore