456 research outputs found

    Segmental Spatiotemporal CNNs for Fine-grained Action Segmentation

    Full text link
    Joint segmentation and classification of fine-grained actions is important for applications of human-robot interaction, video surveillance, and human skill evaluation. However, despite substantial recent progress in large-scale action classification, the performance of state-of-the-art fine-grained action recognition approaches remains low. We propose a model for action segmentation which combines low-level spatiotemporal features with a high-level segmental classifier. Our spatiotemporal CNN is comprised of a spatial component that uses convolutional filters to capture information about objects and their relationships, and a temporal component that uses large 1D convolutional filters to capture information about how object relationships change across time. These features are used in tandem with a semi-Markov model that models transitions from one action to another. We introduce an efficient constrained segmental inference algorithm for this model that is orders of magnitude faster than the current approach. We highlight the effectiveness of our Segmental Spatiotemporal CNN on cooking and surgical action datasets for which we observe substantially improved performance relative to recent baseline methods.Comment: Updated from the ECCV 2016 version. We fixed an important mathematical error and made the section on segmental inference cleare

    Scene Understanding for Autonomous Manipulation with Deep Learning

    Get PDF
    Over the past few years, deep learning techniques have achieved tremendous success in many visual understanding tasks such as object detection, image segmentation, and caption generation. Despite this thriving in computer vision and natural language processing, deep learning has not yet shown signicant impact in robotics. Due to the gap between theory and application, there are many challenges when applying the results of deep learning to the real robotic systems. In this study, our long-term goal is to bridge the gap between computer vision and robotics by developing visual methods that can be used in real robots. In particular, this work tackles two fundamental visual problems for autonomous robotic manipulation: affordance detection and ne-grained action understanding. Theoretically, we propose dierent deep architectures to further improves the state of the art in each problem. Empirically, we show that the outcomes of our proposed methods can be applied in real robots and allow them to perform useful manipulation tasks

    Going Deeper into Action Recognition: A Survey

    Full text link
    Understanding human actions in visual data is tied to advances in complementary research areas including object recognition, human dynamics, domain adaptation and semantic segmentation. Over the last decade, human action analysis evolved from earlier schemes that are often limited to controlled environments to nowadays advanced solutions that can learn from millions of videos and apply to almost all daily activities. Given the broad range of applications from video surveillance to human-computer interaction, scientific milestones in action recognition are achieved more rapidly, eventually leading to the demise of what used to be good in a short time. This motivated us to provide a comprehensive review of the notable steps taken towards recognizing human actions. To this end, we start our discussion with the pioneering methods that use handcrafted representations, and then, navigate into the realm of deep learning based approaches. We aim to remain objective throughout this survey, touching upon encouraging improvements as well as inevitable fallbacks, in the hope of raising fresh questions and motivating new research directions for the reader

    Translating Videos to Commands for Robotic Manipulation with Deep Recurrent Neural Networks

    Full text link
    We present a new method to translate videos to commands for robotic manipulation using Deep Recurrent Neural Networks (RNN). Our framework first extracts deep features from the input video frames with a deep Convolutional Neural Networks (CNN). Two RNN layers with an encoder-decoder architecture are then used to encode the visual features and sequentially generate the output words as the command. We demonstrate that the translation accuracy can be improved by allowing a smooth transaction between two RNN layers and using the state-of-the-art feature extractor. The experimental results on our new challenging dataset show that our approach outperforms recent methods by a fair margin. Furthermore, we combine the proposed translation module with the vision and planning system to let a robot perform various manipulation tasks. Finally, we demonstrate the effectiveness of our framework on a full-size humanoid robot WALK-MAN
    corecore