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Abstract

Over the past few years, deep learning techniques have achieved tremendous success

in many visual understanding tasks such as object detection, image segmentation,

and caption generation. Despite this thriving in computer vision and natural lan-

guage processing, deep learning has not yet shown significant impact in robotics.

Due to the gap between theory and application, there are many challenges when

applying the results of deep learning to the real robotic systems. In this study,

our long-term goal is to bridge the gap between computer vision and robotics by

developing visual methods that can be used in real robots. In particular, this work

tackles two fundamental visual problems for autonomous robotic manipulation: af-

fordance detection and fine-grained action understanding. Theoretically, we propose

different deep architectures to further improves the state of the art in each problem.

Empirically, we show that the outcomes of our proposed methods can be applied in

real robots and allow them to perform useful manipulation tasks.
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Chapter 1

Introduction

1.1 Motivation

Deep learning has become a popular approach to tackle visual problems. Traditional

tasks in computer vision such as object detection (Ren et al., 2015) and instance

segmentation (He et al., 2017) have achieved many mini-revolutions. Despite these

remarkable results, the way these problems are defined prevents them from being

widely used in robotic applications. It is because the field of computer vision fo-

cuses more on the understanding step, while in robotics, the robots not only need

to understand the environment but also be able to interact with it. In this work,

we propose different approaches to bridge the gap between computer vision and

robotics. Our long-term goal is to make the problems in computer vision become

more realistic and useful for robotic applications.

In robotics, detecting object affordances (Gibson, 1979) is an essential capability

that allows a robot to understand and autonomously interact with objects in the

environment (Zech et al., 2017). Most of the prior works on affordance detection

have focused on grasp detection (Bohg and Kragic, 2009) using RGB-D images or

point cloud data. While these methods can lead to successful grasping actions,

they cannot provide other visual information for the robot to use the object as

human. Unlike the visual or physical properties that mainly describe the object

alone, affordances indicate functional interactions of object parts with humans. In

practice, object affordances provide the key information for the manipulation tasks.

For example, to pour the water from a bottle into a bowl, the robot not only has

1



2 Chapter 1. Introduction

to detect the relevant objects (i.e., bottle, bowl), but also be able to localize their

affordances (i.e., grasp, contain). In this study, we consider object affordances

at pixel level from an image. Therefore, the task of detecting object affordance can

be considered as an extension of the well-known semantic image segmentation task

in computer vision. However, detecting object affordances is a more difficult task

than the classical semantic segmentation problem since object affordances represent

the abstract concept when humans interact with the objects. Understanding object

affordances would allow the robot to choose the right action for each manipulation

task in a more autonomous way (Zech et al., 2017).

While object affordances give the robot a detailed understanding about the object,

reasoning about human demonstrations will enable the robot to replicate human

actions. In this work, we cast this problem as a visual video translation task: given

a video, the goal is to translate this video to a command. Although we are inspired by

the video captioning field (Donahue et al., 2014; Venugopalan et al., 2016), there are

two key differences between our approach and the traditional video captioning task:

(i) we use the grammar-free format in the captions for the convenience in robotic

applications, and (ii) we aim at learning the commands through the demonstration

videos that contain the fine-grained human actions. The use of fine-grained classes

forms a more challenging problem than the traditional video captioning task since

the fine-grained actions usually happen within a short duration, and there is usually

ambiguous information between these actions.

To effectively learn the fine-grained actions in the task of translating videos to com-

mands, unlike the traditional video and image captioning methods (Yao et al., 2015;

You et al., 2016) that mainly investigate the use of visual attention to improve the

result, our architectures focus on learning and understanding the human action for

the input video. Since our method provides a meaningful way to let the robots

understand human demonstrations by encoding the knowledge in the video, it can

be integrated with any learning from demonstration techniques to improve the ma-

nipulation capabilities of the robot. We show that, together with our affordance

detection framework, the robot can autonomously perform various manipulation

tasks by “watching” the input video.
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1.2 Contributions

Affordance Detection In (Nguyen et al., 2016a), we propose the first deep learn-

ing framework to detect object affordances. The network has the encoder-decoder

architecture to effectively encode the deep features from the input images. Our

method sets a new benchmark on this task by improving the accuracy over 20%

in comparison with the state-of-the-art methods that use hand-designed geometric

features. However, the drawback of this approach is it is not able to handle the

input images with variable scales and also does not provide the object location.

To address this, in (Nguyen et al., 2017b) we introduce a sequential approach with

two deep networks and a graphical model to localize both the object location and

its affordances. However, this approach cannot be trained end-to-end. In (Nguyen

et al., 2018a), we propose AffordanceNet, which is an end-to-end framework that

not only improves the overall performance but also enables real-time inference. Fur-

thermore, we also demonstrate that the outputs of our affordance network can be

used in various robotic manipulation applications.

Fine-grained Action Understanding In (Nguyen et al., 2018d), we form the fine-

grained action understanding task as a video captioning task. By using a network

with two RNN layers, we can automatically translate a demonstration video to a

command that can be directly used in robotic applications. Although this approach

achieves the state-of-the-art translation results, it is not able to effectively encode

the fine-grained action in the demonstration video. To overcome this limitation, we

propose V2CNet (Nguyen et al., 2018c), a new deep learning framework that has

two branches and aims at understanding the demonstration video in a fine-grained

manner. The first branch of V2CNet has the encoder-decoder architecture to encode

the visual features and sequentially generate the output words as a command, while

the second branch uses a Temporal Convolutional Network (TCN) to explicitly learn

the fine-grained actions. By jointly training both branches, the network is able to

model the sequential information of the command, while effectively encodes the

fine-grained actions. The experimental results on a large-scale dataset show that

V2CNet outperforms recent state of the art by a substantial margin, while its output

commands can be used in the real-world robotic applications.

In both problems, we also introduce a new large-scale dataset that is suitable for

deep learning. To encourage further research, we release our source code and trained

models that allow reproducing the results in our papers. Finally, we also perform

experiments on different robotic platforms to show the real life application of our
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approaches.

Apart from these two main topics, this thesis also makes contribution to other

problems related to vision and manipulation:

• In (Nguyen et al., 2016b), we propose a new method to reorient the object its

nomial pose so the robot can grasp and use the object in the later tasks.

• In (Nguyen et al., 2017a), we propose a real-time method to relocalize the

6DOF pose of the event camera using stacked spatial LSTM network.

• In (Nguyen et al., 2018b), we introduce two deep frameworks that can describe

the properties of the object using natural language, or retrieve the object based

on an input language query.

1.3 Outline

In this dissertation, we develop neural network architectures to address the problem

of affordance detection and translating videos to commands.

In Chapter 2, we briefly provide the fundamental background on neural network,

deep learning, and how to train a deep network.

In Chapter 3, we present our approaches to tackle the affordance detection prob-

lem. We first discuss the motivation and the related work. Then we introduce

three architectures: Encoder-Decoder; Sequential; and AffordanceNet architecture

for this problem. Finally, we present our experimental results using publicly avail-

able datasets as well as our robotic manipulation applications.

In Chapter 4, we present two architectures (S2SNet and V2CNet) for the problem

of translating videos to commands. We show that our V2CNet that uses the Tem-

poral Convolutional Networks (TCN) to learn the fine-grained human actions is an

effective way to handle this task. Lastly, we also describe our new dataset and com-

pare our results with the state-of-the-art methods in the field, as well as the robotic

applications.

Finally, in Chapter 5 we identify the remaining challenges and discuss the future

work.



Chapter 2

Deep Learning Background

This chapter presents the fundamental background on artificial neural networks. We

mainly focus on Convolutional Neural Networks (CNN), Recurrent Neural Networks

(RNN), and how to train a deep network. For a more in-depth discussion, we prefer

the readers to a recent Deep Learning Book by Goodfellow et al. (2016).

2.1 Neural Networks

2.1.1 Vanilla Neural Networks

Inspired by biological neurons, artificial neurons receive input from multiple sources

and output a signal based on the inputs and its activation threshold. Mathemati-

cally, an artificial neuron represents a nonlinear function f : X → Y that maps an

input space X to an output space Y .

More particular, the function f can be parameterized by a weight vector w, a bias

b, and a non-linear activation function σ as follows:

f(x) = σ(wTx + b) (2.1)

Since a single neuron alone cannot represent high dimensional input data, we usually

stack a set of neurons into a layer. A multiple consecutive layers that receive the

input from its previous layer and output the signal to the following layer is called

a vanilla neural network. For example, a 3 layers network could be implemented

5



6 Chapter 2. Deep Learning Background

as f(x) = W3σ(W2σ(W1x)), where W is the weight matrix. The first layer of

the network is called the input layer, the last layer is the output layer, and other

layers are hidden layers. In practice, the output layer normally does not contain the

activation function as it is used to predict the groundtruth.

2.1.2 Convolutional Neural Networks

The vanilla networks only consider the input vector x as one dimensional array.

In Convolutional Neural Networks (CNN), the input is instead a multi-dimensional

array (i.e. a tensor). For example, an image can be presented as 3 channels (width×
height× depth) as the input for CNN. Due to the nature of its design, CNN is well

suitable to handle data with spatial topology such as images, videos, and 3D voxel

data.

Convolutional Layer The convolutional layer is the core building block of a CNN.

The main role of convolutional layer is to learn a compact representation of the high

dimensional input data. This compact representation is usually called as deep feature

and widely used in many tasks. In practice, the convolutional layer compresses the

input data smaller in term of width and height, but expands the data in term of

depth. For example, an 300× 200× 3 image can be transformed into a 5× 5× 1024

deep feature vector. Each channel in this deep feature vector can be considered as

a “view” of the image, emphasizing some aspects, and de-emphasizing others.

Given a tensor as the input, the convolutional layer convolves (slides) over all spatial

locations and compute dot products to output an activation map. The size of this

map is controlled by three parameters depth, stride and zero-padding :

• Depth: Depth is the number of filters we use for the convolution operation. For

example, if the input of the convolutional layer is a raw image, then different

neurons along the depth dimension may activate in presence of various oriented

edges, or blobs of color.

• Stride: Stride is the number of pixels that we move the filter matrix over the

input. For example, when the stride is 2, then the filters jump 2 pixels at

a time as we slide them around. Having a larger stride will produce smaller

feature maps.

• Zero-padding: In practice, it is convenient to pad the input matrix with zeros

around the border, so that we can apply the filter to bordering elements of our
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input image matrix. The use of zero padding technique allows us to control

the size of the feature maps.

Pooling Pooling layer is used to reduce the dimensions of the activation map to

avoid overfitting. The pooling layer operates on each activation map independently

and downsamples them spatially. Two popular pooling techniques are max pooling

and average pooling, both of which operate on a rectangular neighborhood. Unlike

the convolutional layer, the pooling layer does not have any network parameter.

CNN Architectures. A CNN is built by stacking convolutional layers and (possi-

bly) pooling layers to control the number of parameters of the network. Most of CNN

architectures are designed using practical observations. Currently, the popular CNN

architectures are VGG16 (Simonyan and Zisserman, 2014b), Inception (Szegedy

et al., 2016), and ResNet50 (He et al., 2016).
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2.1.3 Recurrent Neural Networks

In many applications, the input or output data are sequences, e.g., a sequence of

words in a sentence or a sequence of frames in a video. While CNN can effectively

encode the feature in each separated frame, it cannot handle the temporal relation-

ship in the data. Recurrent Neural Networks (RNN) are a form of neural networks

designed to work with sequential data. The key idea of RNN is it keeps an internal

state that is updated for each input item in the sequence. This allows RNN to re-

tain context when processing a sequence of data. Two popular RNN are Long Short

Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent

Unit (GRU) (Cho et al., 2014).

LSTM LSTM is a popular RNN since it can effectively model the long-term de-

pendencies from the input data through its gating mechanism. The LSTM network

takes an input xt at each time step t, and computes the hidden state ht and the

memory cell state ct as follows:

it = σ(Wxixt + Whiht−1 + bi)

ft = σ(Wxfxt + Whfht−1 + bf )

ot = σ(Wxoxt + Whoht−1 + bo)

gt = φ(Wxgxt + Whght−1 + bg)

ct = ft � ct−1 + it � gt

ht = ot � φ(ct)

(2.2)

where � represents element-wise multiplication, the function σ : R 7→ [0, 1], σ(x) =
1

1+e−x
is the sigmod non-linearity, and φ : R 7→ [−1, 1], φ(x) = ex−e−x

ex+e−x
is the hy-

perbolic tangent non-linearity. The parameters W and b are trainable weight and

bias of the LSTM network. With this gating mechanism, the LSTM network can

remember or forget information for long periods of time, while is still robust against

the vanishing gradient problem. In practice, the LSTM network is straightforward

to train end-to-end and is widely used in many problems (Donahue et al., 2014;

Ramanishka et al., 2017).

GRU The main advantage of the GRU network is that it uses less computational

resources in comparison with the LSTM network, while achieves competitive per-

formance. Unlike the standard LSTM cell, in a GRU cell, the update gate controls

both the input and forget gates, while the reset gate is applied before the nonlinear
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transformation as follows:

rt = σ(Wxrxt + Whrht−1 + br)

zt = σ(Wxzxt + Whzht−1 + bz)

h̃t = φ(Wxhxt + Whh(rt � ht−1) + bh

ht = zt � ht−1 + (1− zt)� h̃t

(2.3)

where rt, zt, and ht represent the reset, update, and hidden gate of the GRU cell,

respectively.
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2.2 Training Neural Networks

In supervised learning for neural networks, our goal is to find a set of parameters θ

of a neural network that represent a function f ∗() that best fit the input data x with

the output data y. During training, the network predicts y∗ for inputs x from the

training set, then this prediction is compared to their corresponding groundtruth y

to calculate the training error using the loss function L. We optimize this loss over

all the n training examples to achieve a good approximation for function f ∗():

f ∗(θ) ≈ argmin
f∈F

1

n

n∑
i=1

L(f(xi),yi) +R(f) (2.4)

Backpropagation: To minimize the loss L and update the network parameters θ,

a popular technique is backpropagation (Rumelhart et al., 1986). The backpropaga-

tion algorithm is a recursive application of the chain rule that we efficiently compute

gradients of scalar valued functions with respect to their inputs.

In practice, it is usually not feasible to compute the training error from the pre-

dictions for all training examples due to memory limitation, therefore, a random

subset of all data (i.e. minibatch) is used to compute the updates to the network

parameters (Rumelhart et al., 1986).

One of the critical problem when training a neural network is to avoid overfitting,

i.e., the network performs poorly on previously unseen data during testing. Reg-

ularization is an essential technique that should be used when training a neural

network to combat overfitting. The popular regularization methods are Weight De-

cay, Dropout (Srivastava et al., 2014), and Batch Normalization (Ioffe and Szegedy,

2015):

• Weight Decay Weight decay or L2 regularization is a regularization tech-

nique in machine learning that can be used for neural network. In practice,

the weight decay coefficient is added in the loss function to determine how

dominant this regularization term will be in the gradient computation. When

the weight decay coefficient is big, the penalty for big weights of the network

is also big, when it is small weights can freely grow.

• Dropout is a popular technique to combat overfitting during training by

randomly disabling a neuron and its connections. This can be done by setting

the weight of these neurons to zero. Intuitively, disabling neurons prevents
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layers from relying on specific inputs too much, thus requiring them to better

generalize by utilizing more of its inputs. In practice, dropout is cheap to

compute and more effective than weight decay regularization.

• Batch Normalization When training a neural network, batch normalization

allows each layer of a network to learn more independently of other layers.

To achieve this, batch normalization technique normalizes the output of a

previous activation layer by subtracting the batch mean and dividing by the

batch standard deviation. Then it adds two trainable parameters to each layer,

so the normalized output is multiplied by a standard deviation parameter and

add a mean parameter. After this step, the scale of input features from layers

would not extremely different, hence avoiding numerical issues.



Chapter 3

Affordance Detection

3.1 Introduction

An object can be described by various visual properties such as color, shape, or

physical attributes such as weight, volume, and material. Those properties are

useful to recognize objects or classify them into different categories, however they

do not imply the potential actions that human can perform on the object. The

capability to understand functional aspects of objects or object affordances has been

studied for a long time (Gibson, 1979). Unlike other visual or physical properties

that mainly describe the object alone, affordances indicate functional interactions

of object parts with humans. Understanding object affordances is, therefore, crucial

to let an autonomous robot interact with the objects and assist humans in various

daily tasks.

The problem of modeling object affordances can be considered in different ways.

Castellini et al. (2011) defined affordances in terms of human hand poses during the

interaction with objects, while in (Koppula and Saxena, 2016) the authors studied

object affordances in the context of human activities. In this dissertation, similar

to (Myers et al., 2015), we consider object affordances at pixel level from an image,

i.e., a group of pixels which shares the same object functionality is considered as one

affordance. The advantage of this approach is we can reuse the strong state of the

art from the semantic segmentation field, while there is no extra information such

as interactions with human is needed. Detecting object affordances, however, is a

more difficult task than the classical semantic segmentation problem. For example,

two object parts with different appearances may have the same affordance label.

12
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Fig. 3.1. Simultaneous affordance and object detection.

Furthermore, in order to be used in the real robot, it is also essential for an affordance

detection method to run in real-time and generalize well on unseen objects. Fig. 3.1

shows some example results of one of our proposed approach (i.e., AffordanceNet).

In particular, from the input 2D image, our goal is to detect the objects (including

the object positions and its class) and their affordances. Follow the standard design

in computer vision, the object position is defined by a rectangle with respect to

the top-left corner of the image; the object class is defined over the rectangle; the

affordances are encoded at every pixel inside the rectangle. The region of pixels on

the object that has the same functionality is considered as one affordance. Ideally,

we want to detect all relevant objects in the image and map each pixel in these

objects to its most probable affordance label.

3.2 Related Work

The concept of object affordance has been extensively studied in robotics and com-

puter vision over the last few years. We refer the readers to (Zech et al., 2017) for

a detailed discussion about affordance from a robotic point of view, and (Hassanin

et al., 2018) for a recent survey about visual affordance. Here, we summarize two

most related fields to our work: affordance for grasping and object affordance at

pixel-level.

Grasp Affordance Affordance related to grasping is a well-known problem in

robotics (Bohg and Kragic, 2009). In (Montesano and Lopes, 2009) the authors

proposed a method to detect grasp affordances by learning a mapping from local

visual descriptors to grasp parameters. In (Aldoma et al., 2012) a set of the so-

called 0-ordered affordances is detected from the full 3D object mesh models. The

work in (Sun et al., 2013) proposed a method to identify color, shape, material,

and name attributes of objects selected in a bounding box from RGB-D data, while

in (Moldovan and De Raedt, 2014) the authors introduced the concept of rela-
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tional affordances to search for objects in occluded environments. In (Schoeler and

Wörgötter, 2016), the authors used predefined primary tools to infer object function-

alities from 3D point clouds. The work in (Song et al., 2015) proposed to combine

the global object poses with its local appearances to detect grasp affordances. In

(Kjellström et al., 2011), the authors introduced a method to detect object affor-

dances via object-action interactions from human demonstrations. Recently, many

methods used deep learning methods to detect grasp location. For example, the

work in (Lenz et al., 2015) proposed a method to detect grasp affordance using

two deep networks. Similarly, Levine et al. (Levine et al., 2016) collected a large

amount of grasping data and applied a deep network to learn successful grasps from

monocular images.

Besides the traditional grasping problem, many works have investigated different

problems such as using tools from detected affordances (Dehban et al., 2016), ex-

ploring actions and effects when robot interacts with objects (Ugur and Piater,

2015), or reorienting objects for task-oriented grasping (Nguyen et al., 2016c).

Pixel-Level Affordance The problem of understanding affordances at the pixel

level has been termed “object part labelling” in the computer vision community,

while it is more commonly known as “affordance detection” in robotics. In computer

vision, the concept of affordances is not restricted to objects, but covers a wide

range of applications, from understanding human body parts (Lin et al., 2017) to

environment affordances (Roy and Todorovic, 2016b), while in robotics, researchers

focus more on the real-world objects that the robot can interact with. For example,

in (Myers et al., 2015), the authors used hand-designed geometric features to detect

object affordances at pixel level from RGB-D images.

With the rise of deep learning, recent works relied on deep neural networks for de-

signing affordance detection frameworks. The work in (Roy and Todorovic, 2016b)

introduced multi-scale CNN to localize environment affordances. In (Sawatzky et al.,

2017), to avoid depending on costly pixel groundtruth labels, a weakly supervised

deep learning approach was presented to segment object affordances. In computer

vision, Badrinarayanan et al. (Badrinarayanan et al., 2015) used a deep CNN with

an encoder-decoder architecture for real-time semantic pixel-wise labeling. The work

in (Chen et al., 2016) combined CNN with dense CRF to further improve the segmen-

tation results. The work of (Li et al., 2017) introduced an end-to-end architecture

to simultaneously detect and segment object instances. Recently, the authors in (He

et al., 2017) improved over (Li et al., 2017) by proposing a region alignment layer

which effectively aligns the spatial coordinates of region of interests between the
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input image space and the feature map space.
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3.3 Encoder-Decoder Architecture

3.3.1 Data Representation

Recently, many works in computer vision and machine learning have investigated

the effectiveness of using multiple modalities as inputs to a deep network, such as

video and audio (Ngiam et al., 2011) or RGB-D data (Gupta et al., 2014). However,

the problem of picking the best combination of these modalities for a new task is

still an open problem. Ideally, they should represent important properties of the

data so that the network can effectively learn deep features from them.

Fig. 3.2. Data representation. Top row: The original RGB image, its depth
image, and the ground-truth affordances, respectively. Bottom row: The HHA
representation of a depth image.

Intuitively, we can either use only RGB images or combine both RGB and their

associated depth images as the input to our network. In this work we also investi-

gate other ways of data representation that may improve further the performance.

In (Gupta et al., 2014), the authors showed that when the training data is limited

(which is true in our case since the affordance dataset (Myers et al., 2015) that

we use for training has only 30,000 images, compared to other ones that are deep

learning oriented with million of images (Krizhevsky et al., 2012)), it is unlikely that

the CNN would automatically learn important depth properties. To deal with this

problem a new method (Gupta et al., 2014) was proposed to encode the depth im-

ages into three channels at each pixel: the horizontal disparity, the height above the
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Conv + Batch Normal isation + ReLU

Pooling Upsampling Softmax

...

Fig. 3.3. An illustration of our Encoder-Decoder Architecture. From left to right:
The input data are represented as multiple modalities and learned by a CNN with an
encoder-decoder architecture. The CNN produces a k channel image of probabilities,
where k is the number of affordance classes. Each channel is visualized as an image
in this figure.

ground, and the angle between each pixel’s surface normal and direction of inferred

gravity (denote as HHA). The HHA encoder is calculated based on an assumption

that the direction of gravity would impose important information about the envi-

ronment structure. We adapted this representation since the experimental results

in (Gupta et al., 2014) have shown that the features can be learned more effectively

for object recognition tasks in indoor scenes. We show an example of different data

representations for our network in Fig. 3.2.

3.3.2 Architecture

In 2012, the authors of (Krizhevsky et al., 2012) used CNN for classifying RGB

images and showed substantially higher accuracy over the state-of-the-art. Many

works have applied CNN to different vision problems since then (Simonyan and

Zisserman, 2014b; He et al., 2015). Nonetheless, the design of a CNN for image

segmentation still remains challenging. More recently, the work of (Noh et al., 2015)

proposed an encoder-decoder architecture for pixel-wise image labeling. However,

the encoder of this work includes the fully connected layers that make the training

very difficult due to a huge amount of parameters (approximately 134M), and also

significantly increases the inference time. The authors in (Badrinarayanan et al.,

2015) pursued the same idea but they discarded the fully connected layers to reduce

the number of parameters. They showed that the encoder-decoder architecture

without fully connected layers can still be trained end-to-end effectively without

sacrificing the performance and enabling real-time reference.
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In this work, we use the state-of-the-art deep convolutional network described in (Badri-

narayanan et al., 2015). In particular, the network contains two basic components:

the encoder and the decoder network. The encoder network has 13 convolutional

layers that were originally designed in the VGG16 network (Simonyan and Zisser-

man, 2014b) for object classification. Each encoder has one or more convolutional

layers that perform batch normalization, ReLU non-linearity, followed by a non-

overlapping max-pooling with a 2×2 window to produce a dense feature map. Each

decoder layer is associated with an encoder one, ending up in a 13 layers decoder

network. In each one, the input feature map is upsampled using the memorized

pooled indices and convoled with a trainable filter bank. The final decoder layer

produces the high dimensional features that are fed to a multi-class soft-max layer,

which classifies each pixel independently. The output of the softmax layer is a k

channel image of probabilities, where k is the number of classes.

We adapt the above architecture to detect object affordances at pixel level. Fig. 3.3

shows an overview of our approach. The data layer is modified to handle multiple

modalities as input, while each image in the training set is center cropped on all

channels to 240× 320 size from its original 480× 640 size. In testing step, we don’t

crop the images but use the sliding window technique to move the detected window

over the test images. The final predicted result corresponds to the class with the

maximum probability at each pixel over all the sliding windows. Finally, since the

dataset that we use has a large variation in the number of pixels for each class in

the training set, we weigh the loss differently based on this number.

3.3.3 Training

For the training, we generally follow the procedure described in (Badrinarayanan

et al., 2015) using the Caffe library (Jia et al., 2014). Given that the gradient

instability in the deep network can stall the learning, the initialization of the net-

work weights is very important. In particular, we initialized the network using the

technique described in (He et al., 2015). The network is end-to-end trained using

stochastic gradient descent with a 0.9 momentum. The cross-entropy loss (Long

et al., 2014) is used as the objective function for the network. The batch size was

set to 10 while the learning rate was initialized to 0.001, and decreased by a factor

of 10 every 50, 000 iterations. The network is trained from scratch until convergence

with no further reduction in training loss. The training time is approximately 3

days on an NVIDIA Titan X GPU.



3.4. Sequential Architecture 19

Dense CRFAffordance NetworkObject Detector

Fig. 3.4. An overview of our Sequential Architecture. From left to right: A deep
network is first used as an object detector to generate the object bounding boxes
that narrow down the region of interest. A second network is then used to produce
feature maps from these bounding boxes. Finally, these maps are post-processed
with dense CRF to improve the prediction along the class boundaries.

3.4 Sequential Architecture

Although the Encoder-Decoder Architecture (Section 3.3) effectively outputs the

affordance map as the result, it obmits the object location. This would become a

major drawback in many robotic applications when the object location is needed.

Therefore, in this Sequential Architecture (Fig. 3.4), we address the problem of

integrating object detector to an affordance detection system.

3.4.1 Object Detector

Detecting objects in RGB images is a well-known problem in computer vision. Re-

cently, rapid advancements have been made in this field with the rise of deep learning.

Object detection approaches can be divided into region-based (Ren et al., 2015) (Dai

et al., 2016) and non region-based methods (Liu et al., 2016). Although non region-

based methods can achieve real-time performance, they are still outperformed by

region-based systems on public benchmarks (Dai et al., 2016).

We first use the method that was proposed recently in (Dai et al., 2016) (R-FCN) as

our object detector since it achieves state-of-the-art results on public benchmarks,

and has fast inference time. Unlike other object detection methods that modified the

VGG-16 (Simonyan and Zisserman, 2014b) network in their main architecture, R-

FCN is designed to naturally adopt the state-of-the-art image classification network,

such as ResNets (He et al., 2016), hence letting us train a very deep network in a

fully convolutional manner. R-FCN contains two main steps: generating region

proposals and classifying them. The candidate regions are first generated by a deep

network that shares features with R-FCN, then the training process classifies each

region into object categories and background. During testing, a threshold t is chosen
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to decide whenever a region proposal belongs to an object category or not. We refer

readers to (Dai et al., 2016) for the full description of the R-FCN architecture.

3.4.2 Architecture

Similar to (Srikantha and Gall, 2016; Nguyen et al., 2016a; Roy and Todorovic,

2016a), we cast the affordance detection problem as a pixel-wise labeling task. We

modify the state-of-the-art VGG-16 network to produce dense feature map at each

object region provided by R-FCN. Since the original VGG-16 network is designed

for the image classification problem, its final layer is a classifier and can’t produce

dense heat maps to predict the affordance label for each pixel. Therefore, we replace

this layer with an 1× 1 convolution layer of 10 dimensions to predict scores for each

class in our dataset (we use a dataset with 9 affordance classes and 1 class for

the background). We then convert all the fully-connected layers of VGG-16 into

convolutional ones. Furthermore, we use atrous convolution technique (Chen et al.,

2016) to increase the field-of-view of the convolution layers without increasing the

number of network parameters. This technique also helps us to balance the trade-

off between small field-of-view for accurate localization and large field-of-view for

incorporating context information.

To deal with arbitrary resolutions from the input images, we apply a multi-scale

strategy introduced in (Kokkinos, 2016). During the training and testing, we re-

scale the original image into three different versions and feed them to three parallel

networks that share the same parameters. The final feature map is created by

bilinearly interpolating the feature map from each network to the original image

resolution, and taking the maximum value across the three scales at each pixel.

3.4.3 Post-processing with CRF

We adopt dense CRF to post-process the output from the deep network since it

showed substantial performance gains in traditional the image segmentation task (Chen

et al., 2016; Zheng et al., 2015). The energy function of dense CRF is given by:

E(x|P) =
∑
p

θp(xp) +
∑
p,q

ψp,q(xp, xq) (3.1)
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In particular, the unary term θp(xp) indicates the cost of assigning label xp to pixel

p. This term can be considered as the output of the last layer from the affordance

network since this layer produces a probability map for each affordance class (Chen

et al., 2016). The pairwise term ψp,q(xp, xq) models the relationship among neigh-

borhood pixels and penalizes inconsistent labeling. The pairwise potential can be

defined as weighted Gaussians:

ψp,q(xp, xq) = µ(xp, xq)
M∑
m=1

wmκm(fp, fq) (3.2)

where each κm for m = 1, ...,M , is a Gaussian kernel based on the features f of

the associated pixels, and has the weights wm. The term µ(xp, xq) represents label

compatibility and is 1 if xp 6= xq, otherwise 0. As in (Krähenbühl and Koltun,

2011), we use the following kernel in the pairwise potential:

κ(fp, fq) = w1 exp
(
− |pp−pq|

2

2σ2
α
− |Ip−Iq|

2

2σ2
β

)
+w2 exp

(
− |pp−pq|

2

2σ2
γ

) (3.3)

where the first term depends both on pixel positions (denoted as p) and its color

(denoted as I), and the second term only depends on pixel positions. The parameter

σ controls the scale of the Gaussian kernel.

Our goal is to minimize the CRF energy E(x|P), which yields the most probable

label for each pixel. Since the dense CRF has billion edges and the exact minimiza-

tion is intractable, we use the mean-field algorithm (Krähenbühl and Koltun, 2011)

to efficiently approximate the energy function.

3.4.4 Training

We generally follow the procedure described in (Dai et al., 2016) to train our object

detector. The network is trained using gradient descent with 0.9 momentum, 0.0005

weight decay. The input images are resized to 600 × 600 pixels resolution. The

learning rate is first set to 0.001, then we decrease it by a factor of 10 every 20000

iterations. During training, we use 128 regions of interest as bounding box candi-

dates for backpropagation. The network is trained using the lost function combined

from cross-entropy loss and box regression loss. The training time is approximately

1 day on a NVIDIA Titan X GPU.
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After training the object detector network, we do the inference to generate object

bounding boxes in order to feed these boxes to the affordance network. The affor-

dance network is trained using stochastic gradient descent with cross-entropy loss,

0.9 momentum and 0.0005 weight decay. The learning rate is initialized to 0.001 and

decreased by a factor of 10 every 2000 iterations. Similar to (Nguyen et al., 2016a),

we weigh the loss differently based on the statistics of each class to deal with the

large variation in the number of pixels in the training set. The network is trained

until convergence with no further reduction in training loss. It takes approximately

1 day to train our affordance network on a Titan X GPU.

3.5 AffordanceNet Architecture

Although the Sequential Architecture (Section. 3.4) uses a deep learning-based ob-

ject detector to improve the affordance detection accuracy on a real-world dataset.

A limitation of this approach is that its architecture is not end-to-end – i.e. two

separate networks are used, one for object detection and one for affordance detection

– and this is slow for both training and testing. Furthermore, by training two net-

works separately, the networks are not jointly optimal. In computer vision, the work

of (Li et al., 2017) introduced an end-to-end architecture to simultaneously detect

and segment object instances. Recently, the authors in (He et al., 2017) improved

over (Li et al., 2017) by proposing a region alignment layer which effectively aligns

the spatial coordinates of region of interests between the input image space and the

feature map space.

The goal of this architecture is to simultaneously detect the objects (including the

object location and object label) and their associated affordances. We follow the

same concept in (Nguyen et al., 2017b), however we use an end-to-end architecture

instead of a sequential one. Our object affordance detection network can also be seen

as a generalization of the recent state-of-the-art instance segmentation networks (He

et al., 2017; Li et al., 2017). In particular, our network can detect multiple affordance

classes in the object, instead of binary class as in instance segmentation networks (He

et al., 2017; Li et al., 2017).

We first describe three main components of our AffordanceNet: the Region of Inter-

est (RoI) alignment layer (RoIAlign) (He et al., 2017) which is used to correctly com-

pute the feature for an RoI from the image feature map; a sequence of convolution-

deconvolution layers to upsample the RoI feature map to high resolution in order to
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obtain a smooth and fine affordance map; a robust strategy for resizing the training

mask to supervise the affordance detection branch. We show that these components

are the key factors to achieve high affordance detection accuracy. Finally, we present

the whole AffordanceNet architecture in details.

3.5.1 RoIAlign

One of the main components in the recent successful region-based object detectors

such as Faster R-CNN (Ren et al., 2015) is the Region Proposal Network (RPN).

This network shares weights with the main convolutional backbone and outputs

bounding boxes (RoI / object proposal) at various sizes. For each RoI, a fixed-size

small feature map (e.g., 7 × 7) is pooled from the image feature map using the

RoIPool layer (Ren et al., 2015). The RoiPool layer works by dividing the RoI into

a regular grid and then max-pooling the feature map values in each grid cell. This

quantization, however, causes misalignments between the RoI and the extracted

features due to the harsh rounding operations when mapping the RoI coordinates

from the input image space to the image feature map space and when dividing the

RoI into grid cells.

In order to address this problem, the authors in (He et al., 2017) introduced the

RoIAlign layer which properly aligns the extracted features with the RoI. Instead

of using the rounding operation, the RoIAlign layer uses bilinear interpolation to

compute the interpolated values of the input features at four regularly sampled

locations in each RoI bin, and aggregates the result using max operation. This

alignment technique plays an important role in tasks based on pixel level such as

image segmentation. We refer the readers to (He et al., 2017) for a detailed analysis

of the RoIAlign layer.

3.5.2 Mask Deconvolution

In recent state-of-the-art instance segmentation methods such Mask-RCNN (He

et al., 2017) and FCIS (Li et al., 2017), the authors used a small fixed size mask

(e.g. 14× 14 or 28× 28) to represent the object segmentation mask. This is feasible

since the pixel value in each predicted mask of RoI is binary, i.e., either foreground

or background. We empirically found that using small mask size does not work well

in the affordance detection problem since we have multiple affordance classes in each
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object. Hence, we propose to use a sequence of deconvolutional layers for achieving

a high resolution affordance mask.

Formally, given an input feature map with size Si, the deconvolutional layer performs

the opposite operation of the convolutional layer to create a bigger output map with

size So, in which Si and So are related by:

So = s ∗ (Si − 1) + Sf − 2 ∗ d (3.4)

where Sf is the filter size; s and d are stride and padding parameters, respectively.

RoIAlign Deconv Deconv Deconv

7x7 30x30 122x122 244x244

Fig. 3.5. A sequence of three deconvolutonal layers to gradually upsample a 7× 7
fixed size feature map to 244× 244.

In practice, the RoIAlign layer outputs a feature map with size 7× 7. We use three

deconvolutional layers to upsample this map to higher resolution (see Fig. 3.5). The

first deconvolutional layer has the padding d = 1, stride s = 4, and kernel size

Sf = 8 to create the map with size 30 × 30. Similarly, the second layer has the

parameters (d = 1, s = 4, Sf = 8), and the third one has (d = 1, s = 2, Sf = 4) to

create the final high resolution map with the size of 244 × 244. It is worth noting

that before each deconvolutional layer, a convolutional layer (together with ReLu) is

used to learn features which will be used for the deconvolution. This convolutional

layer can be seen as an adaptation between two consecutive deconvolutional layers.

3.5.3 Resizing Affordance Mask

Similar to Mask-RCNN (He et al., 2017) and FCIS (Li et al., 2017), our affordance

detection branch requires a fixed size (e.g., 244 × 244) target affordance mask to

supervise the training. During training, the authors in (He et al., 2017; Li et al.,

2017) resized the original groundtruth mask of each RoI to the pre-defined mask size
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CNN
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RoIAlign

image feature map + RoI
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Fig. 3.6. An overview of our AffordanceNet. From left to right: A deep CNN
backbone (i.e., VGG) is used to extract image features. The RPN shares weights
with the backbone and outputs RoIs. For each RoI, the RoIAlign layer extracts and
pools its features (from the image feature map, i.e., the conv5 3 layer of VGG) to a
fixed size 7× 7 feature map. The object detection branch uses two fully connected
layers for regressing object location and classifying object category. The object
affordance detection branch consists of a sequence of convolutional-deconvolutional
layers and ends with a softmax layer to output a multiclass affordance mask.

to compute the loss. This resizing step outputs a mask with values ranging from

0 to 1, which is thresholded (e.g., at 0.4) to determine if a pixel is background or

foreground. However, using single threshold value does not work in our affordance

detection problem since we have multiple affordance classes in each object. To

address this problem, we propose a resizing strategy with multi-thresholding.

Given an original groundtruth mask, without loss of generality, let P = {c0, c1, ..., cn−1}
be set of n unique labels in that mask, we first linearly map the values in P to

P̂ = {0, 1, ..., n−1} and convert the original mask to a new mask using the mapping

from P to P̂ . We then resize the converted mask to the pre-defined mask size and

use the thresholding on the resized mask as follows:

ρ(x, y) =

p̂, if p̂− α ≤ ρ(x, y) ≤ p̂+ α

0, otherwise
(3.5)

where ρ(x, y) is a pixel value in the resized mask; p̂ is one of values in P̂ ; α is the

hyperparameter and is set to 0.005 in our experiments.

Finally, we re-map the values in the thresholded mask back to the original label

values (by using the mapping from P̂ to P ) to achieve the target training mask.

3.5.4 Architecture

Fig. 3.6 shows an overview of our end-to-end affordance detection network. The

network is composed of two branches for object detection and affordance detection.
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Given an input image, we use the VGG16 (Simonyan and Zisserman, 2014b) network

as the backbone to extract deep features from the image. A RPN that shares the

weights with the convolutional backbone is then used to generate candidate bounding

boxes (RoIs). For each RoI, the RoIAlign layer extracts and pools its corresponding

features (from the image feature map — the conv5 3 layer of VGG16) into a 7× 7

feature map. In the object detection branch, we use two fully connected layers,

each with 4096 neurons, followed by a classification layer to classify the object and

a regression layer to regress the object location. In the affordance detection branch,

the 7×7 feature map is gradually upsampled to 244×244 to achieve high resolution

map. The affordance branch uses a softmax layer to assign each pixel in the 244×244

map to its most probable affordance class. The whole network is trained end-to-end

using a multi-task loss function.

3.5.5 Multi-Task Loss

In our aforementioned end-to-end architecture, the classification layer outputs a

probability distribution p = (p0, ..., pK) over K + 1 object categories, including the

background. As in (Ren et al., 2015), p is the output of a softmax layer. The

regression layer outputs K + 1 bounding box regression offsets (each offset includes

box center and box size): tk = (tkx, t
k
y, t

k
w, t

k
h). Each offset tk corresponds to each

class k. Similar to (Girshick et al., 2014; Ren et al., 2015) we parameterize for tk,

in which tk specifies a scale-invariant translation and log-space height/width shift

relative to an anchor box of the RPN. The affordance detection branch outputs a set

of probability distributions m = {mi}i∈RoI for each pixel i inside the RoI, in which

mi = (mi
0, ...,m

i
C) is the output of a softmax layer defined on C+1 affordance labels,

including the background.

We use a multi-task loss L to jointly train the bounding box class, the bounding

box position, and the affordance map as follows:

L = Lcls + Lloc + Laff (3.6)

where Lcls is defined on the output of the classification layer; Lloc is defined on

the output of the regression layer; Laff is defined on the output of the affordance

detection branch.

The prediction target for each RoI is a groundtruth object class u, a groundtruth

bounding box offset v, and a target affordance mask s. The values of u and v are
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provided with the training datasets. The target affordance mask s is the intersection

between the RoI and its associated groundtruth mask. For pixels inside the RoI

which do not belong to the intersection, we label them as background. Note that

the target mask is then resized to a fixed size (i.e., 244 × 244) using the proposed

resizing strategy in Section 3.5.3. Specifically, we can rewrite Equation 3.6 as follows:

L(p, u, tu, v,m, s) =Lcls(p, u) + I[u ≥ 1]Lloc(t
u, v)

+ I[u ≥ 1]Laff (m, s) (3.7)

The first loss Lcls(p, u) is the multinomial cross entropy loss for the classification

and is computed as follows:

Lcls(p, u) = −log(pu) (3.8)

where pu is the softmax output for the true class u.

The second loss Lloc(t
u, v) is Smooth L1 loss (Girshick et al., 2014) between the

regressed box offset tu (corresponding to the groundtruth object class u) and the

groundtruth box offset v, and is computed as follows:

Lloc(t
u, v) =

∑
i∈{x,y,w,h}

SmoothL1(tui − vi) (3.9)

where

SmoothL1(x) =

{
0.5x2 if |x| < 1

|x− 0.5| otherwise

The Laff (m, s) is the multinomial cross entropy loss for the affordance detection

branch and is computed as follows:

Laff (m, s) =
−1

N

∑
i∈RoI

log(mi
si

) (3.10)

where mi
si

is the softmax output at pixel i for the true label si; N is the number of

pixels in the RoI.

In Equation (3.7), I[u ≥ 1] is an indicator function which outputs 1 when u ≥ 1

and 0 otherwise. This means that we only define the box location loss Lloc and

the affordance detection loss Laff only on the positive RoIs. While the object

classification loss Lcls is defined on both positive and negative RoIs.
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It is worth noting that our loss for affordance detection branch is different from the

instance segmentation loss in (He et al., 2017; Li et al., 2017). In those works, the

authors rely on the output of the classification layer to determine the object label.

Hence the segmentation in each RoI can be considered as a binary segmentation,

i.e., foreground and background. Thus, the authors use per-pixel sigmoid layer and

binary cross entropy loss. In our affordance detection problem, the affordance labels

are different from the object labels. Furthermore, the number of affordances in each

RoI is not binary, i.e., it is always bigger than 2 (including the background). Hence,

we rely on a per-pixel softmax and a multinomial cross entropy loss.

3.5.6 Training and Inference

We train the network in an end-to-end manner using stochastic gradient descent

with 0.9 momentum and 0.0005 weight decay. The network is trained on a Titan

X GPU for 200k iterations. The learning rate is set to 0.001 for the first 150k and

decreased by 10 for the last 50k. The input images are resized such that the shorter

edge is 600 pixels, but the longer edge does not exceed 1000 pixels. In case the

longer edge exceeds 1000 pixels, the longer edge is set to 1000 pixels, and the images

are resized based on this edge. Similar to (He et al., 2017), we use 15 anchors in the

RPN (5 scales and 3 aspect ratios). Top 2000 RoIs from RPN (with a ratio of 1:3 of

positive to negative) are subsequently used for computing the multi-task loss. An

RoI is considered positive if it has IoU with a groundtruth box of at least 0.5 and

negative otherwise.

During the inference phase, we select the top 1000 RoIs produced by the RPN

and run the object detection branch on these RoIs, followed by a non-maximum

suppression (Ren et al., 2015). From the outputs of the detection branch, we select

the outputted boxes that have the classification score higher than 0.9 as the final

detected objects. In case there are no boxes satisfying this condition, we select

the one with highest classification score as the only detected object. We use the

detected objects as the inputs for affordance detection branch. For each pixel in

the detected object, the affordance branch predicts C + 1 affordance classes. The

output affordance label for each pixel is achieved by taking the maximum across the

affordance classes. Finally, the predicted 244× 244 affordance mask of each object

is resized to the object (box) size using the resizing strategy in Section 3.5.3.

In case there is the overlap between detected objects, the final affordance label is

decided based on the affordance priority. For example, the “contain” affordance is
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considered to have low priority than other affordances since there may have other

objects laid on it.
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3.6 Experiments

3.6.1 Dataset

3.6.1.1 UMD Dataset

The UMD dataset (Myers et al., 2015) contains around 30, 000 RGB-D images of

daily kitchen, workshop, and garden objects. The RGB-D images of this dataset

were captured from a Kinect camera on a rotating table in a clutter-free setup.

This dataset has 7 affordance classes and 17 object categories. Since there is no

groundtruth for the object bounding boxes, we compute the rectangle coordinates of

object bounding boxes based on the affordance masks. We follow the split in (Myers

et al., 2015) to train and test our network.

3.6.1.2 IIT-AFF Dataset

The work in (Myers et al., 2015) proposed the first affordance dataset with pixel-

wise labels. The data were collected using a Kinect sensor, which records RGB-D

images at a 480× 640 resolution. Although this dataset contains a large amount of

annotated images, most of them were captured on a turntable table in a cluttered-

free setup. Consequently, the use of this dataset may not be sufficient for robotic

applications in real-world cluttered scenes.

Data collection Since CNN requires a large amount of data for training, we intro-

duce a new affordance dataset to fulfill this purpose. In general, we want to create a

large-scale dataset that enables the robot to infer properly in real-world scenes after

the training step. In order to do this, we first choose a subset of object categories

from the ImageNet dataset (Russakovsky et al., 2015). In addition, we also collect

RGB-D images from various cluttered scene setups using an Asus Xtion sensor and

a MultiSense-SL camera. The images from the Asus Xtion and MultiSense camera

were collected at 480× 640 and 1024× 1024 resolutions, respectively.

Data annotation Our dataset provides both bounding box annotations for object

detection and pixel-wise labels for affordance detection. We reuse the bounding

boxes that come with the images from the ImageNet dataset, while all images are

manually annotated with the affordance labels at pixel-level. Since the images from

the ImageNet dataset don’t have the associated depth maps, we use the state-of-
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the-art method in (Liu et al., 2015) to generate the relative depth maps for these

images, which can be used by algorithms that need them.

Fig. 3.7. Example images from our IIT-AFF dataset. Top row: Images from the
ImageNet dataset. Middle row: Images from the Asus Xtion camera. Bottom
row: Images from the MultiSense-SL camera.

Dataset statistic In particular, our dataset has 10 object categories (bottle, bowl,

cup, drill, hammer, knife, monitor, pan, racket, spatula) and 9 affordance classes

(contain, cut, display, engine, grasp, hit, pound, support, w-grasp),

which are common human tools with their related manipulation capabilities (Ta-

ble 3.1). The dataset has 8, 835 images, containing 14, 642 bounding box annotated

objects (in which 7, 866 bounding boxes come from the ImageNet dataset) and

24, 677 affordance parts of the objects. We use 50% of the dataset for training, 20%

for validation, and the rest 30% for inference. Fig. 3.7 and 3.8 show some example

images and the statistics of our dataset.
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Fig. 3.8. The statistics of our IIT-AFF dataset. (a) Object distribution as the
number of bounding boxes in each object category. (b) Affordance distribution as
the number of regions in each affordance class.

Table 3.1. Description of Object Affordance Labels

Affordances Function

contain Storing/holding liquid/objects (e.g. the inside part of bowls)

cut Chopping objects (e.g. the knife blade)

display Showing information (e.g. the monitor screen)

engine Covering engine part of tools (e.g. the drill’s engine)

grasp Enclosing by hand for manipulation (e.g. handles of tools)

hit Striking other objects with refection (e.g. the racket head)

pound Striking other objects with solid part (e.g. the hammer head)

support Holding other objects with flat surface (e.g. turners)

w-grasp Wrapping by hand for holding (e.g. the outside of a cup)

3.6.2 Evaluation Metric and Baseline

As the standard practice, we compare our affordance results with other methods

using the Fw
β metric (Margolin et al., 2014). This metric extends the Fβ measure

and is calculated as follows:

Fw
β = (1 + β2)

Precisionw ·Recallw

β2 · Precisionw +Recallw
(3.11)
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Fig. 3.9. Examples of affordance detection results by AffordanceNet on the IIT-
AFF dataset.

where β = 1, Precisionw, and Recallw are the weighted versions of the standard

Precision and Recall measures. The novelty of this measure as explained in (Mar-

golin et al., 2014) is to weigh the errors of the pixels by taking into account their

location and neighborhood information to overcome three flawed assumptions: in-

terpolation, dependency and equal importance of the prediction map.

We compare our results with the following state-of-the-art approaches: DeepLab (Chen

et al., 2016) with and without post processing with CRF (denoted as DeepLab and

DeepLab-CRF), CNN with encoder-decoder architecture (Nguyen et al., 2016a) on

RGB and RGB-D images (denoted as ED-RGB and ED-RGBD), CNN with ob-

ject detector (BB-CNN) and CRF (BB-CNN-CRF) (Nguyen et al., 2017b). For the

UMD dataset, we also report the results from the geometric features-based approach

(HMD and SRF) (Myers et al., 2015) and a deep learning-based approach that used

both RGB and depth images as inputs (ED-RGBHHA) (Nguyen et al., 2016a). Note

that, all the deep learning-based methods use the VGG16 as the main backbone for

a fair comparison.
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Table 3.2. Performance on IIT-AFF Dataset

ED-RGB ED-RGBD DeepLab
DeepLab-

CRF BB-CNN
BB-CNN-

CRF AffordanceNet

contain 66.38 66.00 68.84 69.68 75.60 75.84 79.61

cut 60.66 60.20 55.23 56.39 69.87 71.95 75.68

display 55.38 55.11 61.00 62.63 72.04 73.68 77.81

engine 56.29 56.04 63.05 65.11 72.84 74.36 77.50

grasp 58.96 58.59 54.31 56.24 63.72 64.26 68.48

hit 60.81 60.47 58.43 60.17 66.56 67.07 70.75

pound 54.26 54.01 54.25 55.45 64.11 64.86 69.57

support 55.38 55.08 54.28 55.62 65.01 66.12 69.81

w-grasp 50.66 50.42 56.01 57.47 67.34 68.41 70.98

Average 57.64 57.32 58.38 59.86 68.57 69.62 73.35

3.6.3 Results

IIT-AFF Dataset Table 3.2 summarizes results on the IIT-AFF dataset. The re-

sults clearly show that AffordanceNet significantly improves over the state of the art.

In particular, AffordanceNet boosts the Fw
β score to 73.35, which is 3.7% improve-

ment over the second best BB-CNN-CRF. It is worth noting that AffordanceNet

achieves this result using an end-to-end architecture, and no further post processing

step such as CRF is used. Our AffordanceNet also achieves the best results for all

9 affordance classes. We also found that for the dataset containing cluttered scenes

such as IIT-AFF, the approaches that combine the object detectors with deep net-

works to predict the affordances (AffordanceNet, BB-CNN) significantly outperform

over the methods that use deep networks alone (DeepLab, ED-RGB).

UMD Dataset Table 3.3 summarizes results on the UMD dataset. On the average,

our AffordanceNet also achieves the highest results on this dataset, i.e., it outper-

forms the second best (ED-RGBD) 2.9%. It is worth noting that the UMD dataset

only contains clutter-free scenes, therefore the improvement of AffordanceNet over

compared methods is not as high as the one in the real-world IIT-AFF dataset.

We recall that the AffordanceNet is trained using the RGB images only, while the

second best (ED-RGBD) uses both RGB and the depth images. The Table 3.3

also clearly shows that the deep learning-based approaches such as AffordanceNet,

DeepLab, ED-RGB significantly outperform the hand-designed geometric feature-

based approaches (HMP, SRF).
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Table 3.3. Performance on UMD Dataset

HMP SRF DeepLab ED-RGB ED-RGBD
ED-RGB

HHA AffordanceNet

grasp 0.367 0.314 0.620 0.719 0.714 0.673 0.731

w-grasp 0.373 0.285 0.730 0.769 0.767 0.652 0.814

cut 0.415 0.412 0.600 0.737 0.723 0.685 0.762

contain 0.810 0.635 0.900 0.817 0.819 0.716 0.833

support 0.643 0.429 0.600 0.780 0.803 0.663 0.821

scoop 0.524 0.481 0.800 0.744 0.757 0.635 0.793

pound 0.767 0.666 0.880 0.794 0.806 0.701 0.836

Average 0.557 0.460 0.733 0.766 0.770 0.675 0.799

To conclude, our AffordanceNet significantly improves over the state of the art, while

it does not require any extra post processing or data augmentation step. From the

robotic point of view, AffordanceNet can be used in many tasks since it provides

all the object locations, object categories, and object affordances in an end-to-end

manner. The running time of AffordanceNet is around 150ms per image on a Titan

X GPU, making it is suitable for robotic applications. Our implementation is based

on Caffe deep learning library (Jia et al., 2014). The source code and trained models

that allow reproducing the results in this paper will be released upon acceptance.

3.6.4 Ablation Studies

Effect of Affordance Map Size In this section, we analyze the effect of the affor-

dance map size. Follow the setup in Mask RCNN, we use only one deconvolutional

layer with parameters (d = 1, s = 2, Sf = 4) to create 14 × 14 affordance map

from the 7× 7 feature map (denoted as AffordanceNet14). Similarly, we change the

parameters to (d = 1, s = 4, Sf = 6) to create the 28× 28 affordance map (denoted

as AffordanceNet28). Furthermore, we also setup networks which use two decon-

volutional layers to create 56 × 56 affordance map (denoted as AffordanceNet56),

and three deconvolutional layers to create 112 × 112 affordance map (denoted as

AffordanceNet112). Finally, to check the effect of the convolutional layers, we also

setup a network with 6 convolutional layers (together with ReLu), follow by a de-

convolutional layer that upsampling the 7 × 7 feature map to 14 × 14 (denoted as

AffNet14 6Conv).
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AffordanceNet14 AffNet14 6conv AffordanceNet28 AffordanceNet56 AffordanceNet112 AffordanceNet244

Fig. 3.10. Examples of predicted affordance masks using different mask sizes. The
predicted mask is smoother and finer when a bigger mask size is used.

(a) (b) (c)

Fig. 3.11. Affordance detection in the wild. (a) and (b): We use AffordanceNet
to detect the objects in Gazebo simulation. (c) AffordanceNet also performs well
when the input is an artwork.

Table 3.4. Effect of Mask Size

Fw
β

AffordanceNet14 57.71

AffordanceNet28 66.13

AffordanceNet56 71.54

AffordanceNet112 72.52

AffordanceNet14 6Conv 60.27

AffordanceNet 73.35

Table 3.4 summarizes the average Fw
β score of the aforementioned networks on the

IIT-AFF dataset. The results show that the affordance detection accuracy is grad-

ually increasing when the bigger affordance map is used. In particular, the Affor-

danceNet14 gives very poor results since the map size of 14 × 14 is too small to

represent multiclass affordances. The accuracy is significantly improved when we

use the 28 × 28 affordance map. However, the improvement does not linearly in-

crease with the affordance map size, it slows down when the bigger mask sizes are

used. Note that using the big affordance map can improve the accuracy, but it also
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Fig. 3.12. WALK-MAN is performing a pouring task. The outputs of the object
detection branch help the robot to recognize and localize the objects (i.e., bottle,
pan) while the outputs of the affordance detection branch help the robot to perform
the task (i.e., where on the bottle the robot should grasp and where on the pan the
water should be poured).

increases the number of parameters of the network. In our work, we choose the

244× 244 map size for AffordanceNet since it both gives the good accuracy and can

be trained with a Titan X GPU. We also found that using more convolutional layers

(as in AffordanceNet14 6Conv) can also improve the accuracy, but it still requires

to upsample the affordance map to high resolution in order to achieve good results.

Fig 3.10 shows some example results when different affordance map sizes are used.

Affordance Detection in The Wild The experimental results on the simple con-

strained environment UMD dataset and the real-world IIT-AFF dataset show that

the AffordanceNet performs well on public research datasets. However, real-life im-

ages may be more challenging. In this study, we show some qualitative results to

demonstrate that the AffordanceNet can generalize well in other testing environ-

ments. As illustrated in Fig 3.11, our AffordanceNet can successfully detect the

objects and their affordances from artwork images or images from a simulated cam-

era in Gazebo simulation (Mingo Hoffman et al., 2014). Although this result is

qualitative, it shows that AffordanceNet is applicable for wide ranges of applica-

tions, including in simulation environment which is crucial for developing robotic

applications.
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3.6.5 Robotic Applications

Since the AffordanceNet can detect both the objects and their affordances at the

speed of 150ms per image, it is quite suitable for robotic applications. To demon-

strate that, we use the humanoid robot WALK-MAN (Tsagarakis et al., 2017) to

perform different manipulation experiments. The robot is controlled in real-time

using the XBotCore framework (Muratore et al., 2017). The whole-body motion

planning is generated by OpenSoT library (Rocchi et al., 2015), while the Affor-

danceNet is used to provide visual information for the robot. Note that, from the

2D information outputted by AffordanceNet, we use the corresponding depth image

to project it into 3D space, to be used in the real robot. Using this setup, the

robot can perform different tasks such as grasping, pick-place, and pick-pouring. It

is worth noting that all information produced by the AffordanceNet, i.e. the ob-

ject locations, object labels, and object affordances are very useful for the tasks.

For example, the robot knows where to grasp a bottle via the bottle’s grasp af-

fordance, and where to pour the water into a pan via the pan’s contain affor-

dance (see Fig. 3.12). Our experimental video can be found at the following link:

https://sites.google.com/site/affordancenetwork/

https://sites.google.com/site/affordancenetwork/
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Fine-grained Action

Understanding

4.1 Introduction

While humans can effortlessly understand the actions and imitate the tasks by just

watching someone else, making the robots to be able to perform actions based on

observations of human activities is still a major challenge in robotics (Chrystopher

L. Nehaniv, 2009). By understanding human actions, robots may acquire new skills,

or perform different tasks, without the need for tedious programming. It is expected

that the robots with these abilities will play an increasingly more important role in

our society in areas such as assisting or replacing humans in disaster scenarios,

taking care of the elderly, or helping people with everyday life tasks. Recently,

this problem has been of great interest to researchers, many approaches have been

proposed to tackle different tasks such as pouring water (Pastor et al., 2009), drawer

opening (Rana et al., 2017), and multi-stage manipulation (Zhang et al., 2018).

In this work, we argue that there are two main capabilities that a robot must de-

velop to be able to replicate human activities: understanding human actions, and

imitating them. The imitation step has been widely investigated in robotics within

the framework of learning from demonstration (LfD) (Argall et al., 2009). In par-

ticular, there are two main approaches in LfD that focus on improving the accuracy

of the imitation process: kinesthetic teaching (Akgun et al., 2012) and motion cap-

ture (Koenemann et al., 2014). While the first approach needs the users to physically

39
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move the robot through the desired trajectories, the second approach uses a bodysuit

or camera system to capture human motions. Although both approaches success-

fully allow a robot to imitate a human, the number of actions that the robot can

learn is quite limited due to the need of using expensively physical systems (i.e., real

robot, bodysuit, etc.) to capture the training data (Akgun et al., 2012; Koenemann

et al., 2014).

The understanding step, on the other hand, receives more attention from the com-

puter vision community. Two popular problems that receive a great deal of interest

are video classification (Karpathy et al., 2014) and action recognition (Simonyan and

Zisserman, 2014a). Recently, with the rise of deep learning, the video captioning

task (Venugopalan et al., 2016) has become more feasible to tackle. Unlike the video

classification or detection tasks which output only the class identity, the output of

the video captioning task is a natural language sentence, which is potentially useful

in robotic applications.

While the field of LfD focuses mainly on the imitation step, we focus on the un-

derstanding step, but our proposed method also allows the robot to perform useful

tasks via the output commands. Our goal is to bridge the gap between computer

vision and robotics, by developing a system that helps the robot understand human

actions, and use this knowledge to complete useful tasks. Furthermore, since our

method provides a meaningful way to let the robots understand human demonstra-

tions by encoding the knowledge in the video, it can be integrated with any LfD

techniques to improve the manipulation capabilities of the robot.

In particular, we cast the problem of translating videos to commands as a video

captioning task: given a video, the goal is to translate this video to a command.

Although we are inspired by the video captioning field, there are two key differences

between our approach and the traditional video captioning task: (i) we use the

grammar-free format in the captions for the convenience in robotic applications,

and (ii) we aim at learning the commands through the demonstration videos that

contain the fine-grained human actions. The use of fine-grained classes forms a more

challenging problem than the traditional video captioning task since the fine-grained

actions usually happen within a short duration, and there is usually ambiguous

information between these actions. To effectively learn the fine-grained actions,

unlike the traditional video and image captioning methods (Yao et al., 2015; You

et al., 2016) that mainly investigate the use of visual attention to improve the result,

we propose two deep network architectures (S2SNet and V2CNet) that focus on

learning and understanding the human action for this problem.



4.2. Related Work 41

4.2 Related Work

Learning from Demonstration LfD techniques are widely used in the robotics

community to teach the robots new skills based on human demonstrations (Argall

et al., 2009). Two popular LfD approaches are kinesthetic teaching (Pastor et al.,

2011; Akgun et al., 2012) and sensor-based demonstration (Calinon et al., 2009;

Kruger et al., 2010). Recently, Koenemann et al. (2014) introduced a method

to transfer complex whole-body human motions to a humanoid robot in real-time.

Welschehold et al. (2016) proposed to transform human demonstrations into hand-

object trajectories in order to adapt to robotic manipulation tasks. The advantage of

LfD approaches is their abilities to let the robots accurately repeat human motions,

however, it is difficult to expand LfD techniques to a large number of tasks since the

training process is usually designed for a specific task or needs training data from

the real robotic systems (Akgun et al., 2012).

Action Representation From a computer vision point of view, Aksoy et al.

(2016) represented the continuous human actions as “semantic event chains” and

solved the problem as an activity detection task. Yang et al. (2015) proposed

to learn manipulation actions from unconstrained videos using CNN and grammar

based parser. However, they need an explicit representation of both the objects

and grasping types to generate command sentences. Lee et al. (2013) captured

the probabilistic activity grammars from the data for imitation learning. Ramirez-

Amaro et al. (2015) extracted semantic representations from human activities in

order to transfer skills to the robot. Recently, Plappert et al. (2017) introduced a

method to learn bidirectional mapping between human motion and natural language

with RNN. In this paper, we propose to directly learn the commands from the

demonstration videos without any prior knowledge. Our method takes advantage

of CNN to extract robust features, and RNN to model the sequences, while being

easily adapted to any human activity.

Command Understanding Currently, commands are widely used to communicate

and control real robotic systems. However, they are usually carefully programmed

for each task. This limitation means programming is tedious if there are many

tasks. To automatically allow the robot to understand the commands, Tellex et al.

(2011) formed this problem as a probabilistic graphical model based on the semantic

structure of the input command. Similarly, Guadarrama et al. (2013) introduced

a semantic parser that used both natural commands and visual concepts to let

the robot execute the task. While we retain the concepts of (Tellex et al., 2011;
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Guadarrama et al., 2013), the main difference in our approach is that we directly

use the grammar-free commands from the translation module. This allows us to use

a simple similarity measure to map each word in the generated command to the real

command that can be used on the real robot.

Video Captioning With the rise of deep learning, the video captioning problem

becomes more feasible to tackle. Donahue et al. (2014) introduced a first deep

learning framework that can interpret an input video to a sentence. The visual

features were first extracted from the video frames then fed into a LSTM network to

generate the video captions. Recently, Yu et al. (2015) introduced a new hierarchical

RNN to generate one or multiple sentences to describe a video. Venugopalan et al.

(2016) proposed a sequence-to-sequence model to generate the video captions from

both RGB and optical flow images. The authors in (Yao et al., 2015; Ramanishka

et al., 2017) investigated the use of visual attention mechanism for this problem.

Similarly, Pan et al. (2017) proposed to learn semantic attributes from the image

then incorporated this information into a LSTM network. In this work, we cast

the problem of translating videos to commands as a video captioning task to build

on the strong state the art in computer vision. However, unlike (Yao et al., 2015;

Ramanishka et al., 2017) that explore the visual attention mechanism to improve the

result, we focus on the fine-grained actions in the video. Our hypothesis is based on

the fact that the fine-grained action is the key information in the video-to-command

task, hence plays a significant contribution to the results.

Reinforcement/Meta Learning Recently, reinforcement learning and meta-learning

techniques are also widely used to solve the problem of learning from human demon-

strations. Rhinehart and Kitani (2017) proposed a method to predict the outcome

of the human demonstrations from a scene using inverse reinforcement learning.

Stadie et al. (2017) learned a reward function based on human demonstrations of a

given task in order to allow the robots to execute some trials, then maximize the

reward to reach the desired outcome. With a different viewpoint, Finn et al. (2017)

proposed an one-shot visual imitation learning method to let the robot perform the

tasks from just one single demonstration. More recently, Yu et al. (2018) presented

a new approach for one-shot learning by fusing human and robot demonstration

data to build up prior knowledge through meta-learning. The main advantage of

meta-learning approach is it allows the robot to replicate human actions from just

one or few demonstrations, however handling domain shift and the dependence on

the data from the real robotic system are still the major challenges in this approach.
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4.3 Problem Formulation

In order to effectively generate both the output command and understand the fine-

grained action in the video, we cast the problem of translating videos to commands

as a video captioning task, and use a TCN network to classify the actions. Both

tasks use the same input feature and are jointly trained using a single multi-task loss

function. In particular, the input video is considered as a list of frames, presented by

a sequence of features X = (x1,x2, ...,xn) from each frame. The output command

is presented as a sequence of word vectors Yw = (yw1 ,y
w
2 , ...,y

w
m), in which each

vector yw represents one word in the dictionary D. Each input video also has an

action groundtruth label, represented as an one-hot vector Ya ∈ R|C|, where C is the

number of action classes, to indicate the index of the truth action class. Our goal is

to simultaneously find for each sequence feature Xi its most probable command Yw
i ,

and its best suitable action class Ya
i . In practice, the number of video frames n is

usually higher than the number of words m. To make the problem more suitable for

robotic applications, we use a dataset that contains mainly human demonstrations

and assume that the command is in grammar-free format.

4.3.1 Command Embedding

Since a command is a list of words, we have to represent each word as a vector for

computation. There are two popular techniques for word representation: one-hot

encoding and word2vec (Mikolov et al., 2013) embedding. Although the one-hot

vector is high dimensional and sparse since its dimensionality grows linearly with

the number of words in the vocabulary, it is straightforward to use this embedding

in the video captioning task. In this work, we choose the one-hot encoding technique

as our word representation since the number of words in our dictionary is relatively

small. The one-hot vector yw ∈ R|D| is a binary vector with only one non-zero entry

indicating the index of the current word in the vocabulary. Formally, each value in

the one-hot vector yw is defined by:

yw(i) =

1, if i = ind(yw)

0, otherwise
(4.1)

where ind(yw) is the index of the current word in the dictionary D. In practice, we

add an extra word EOC to the dictionary to indicate the end of command sentences.
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4.3.2 Visual Features

As the standard practice in the video captioning task (Venugopalan et al., 2016;

Ramanishka et al., 2017), the visual feature from each video frame is first extracted

offline then fed into the captioning module. This step is necessary since we usually

have a lot of frames from the input videos. In practice, we first sample n frames from

each input video in order to extract deep features from the images. The frames are

selected uniformly with the same interval if the video is too long. In case the video

is too short and there are not enough n frames, we create an artificial frame from the

mean pixel values of the ImageNet dataset (Russakovsky et al., 2015) and pad this

frame at the end of the list until it reaches n frames. We then use the state-of-the-

art CNN to extract deep features from these input frames. Since the visual features

provide the key information for the learning process, three popular CNN are used in

our experiments: VGG16 (Simonyan and Zisserman, 2014b), Inception v3 (Szegedy

et al., 2016), and ResNet50 (He et al., 2016).

Specifically, for the VGG16 network, the features are extracted from its last fully

connected fc2 layer. For the Inception v3 network, we extract the features from its

pool 3:0 tensor. Finally, we use the features from pool5 layer of the ResNet50

network. The dimension of the extracted features is 4096, 2048, 2048, for the

VGG16, Inception v3, and ResNet50 network, respectively. All these CNN are pre-

trained on ImageNet dataset for image classifications. We notice that the names

of the layers we mention here are based on the Tensorflow (Abadi et al., 2015)

implementation of these networks.

4.4 S2SNet Architecture

4.4.1 Architecture

Our S2SNet is based on the encoder-decoder scheme (Venugopalan et al., 2016; Ra-

manishka et al., 2017), which is adapted from the popular sequence to sequence

model (Sutskever et al., 2014) in machine translation. Although recent approaches

to video captioning problem use attention mechanism (Ramanishka et al., 2017) or

hierarchical RNN (Yu et al., 2015), our proposal solely relies on the neural archi-

tecture. Based on the input data characteristics, our network smoothly encodes the

input visual features and generates the output commands, achieving a fair improve-
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CNN CNN CNNCNN

LSTM/GRU LSTM/GRU LSTM/GRULSTM/GRU

LSTM/GRU LSTM/GRU LSTM/GRULSTM/GRU

LSTM/GRU LSTM/GRU LSTM/GRULSTM/GRU

LSTM/GRU LSTM/GRU LSTM/GRULSTM/GRU

CNN CNN CNNCNN

righthand pour water EOC

w1 w2 w3 ...

x1 x2 x3 ... xn

wn

Fig. 4.1. An overview of our sequence to sequence approach. We first extract
the deep features from the input frames using CNN. Then the first LSTM/GRU
layer is used to encode the visual features. The input words are fed to the second
LSTM/GRU layer and this layer sequentially generates the output words.

ment over the state of the art without using any additional modules.

In particular, given an input video, we first extract visual features from the video

frames using the pretrained CNN network. These features are encoded in the first

RNN layer to create the encoder hidden state. The input words are then fed to the

second RNN layer, and this layer will decode sequentially to generate a list of words

as the output command. Fig. 4.1 shows an overview of our approach. More formally,

given an input sequence of features X = (x1,x2, ...,xn), we want to estimate the

conditional probability for an output command Y = (y1,y2, ...,ym) as follows:

P (y1, ...,ym|x1, ...,xn) =
m∏
i=1

P (yi|yi−1, ...,y1,X) (4.2)

Since we want a generative model that encodes a sequence of features and produces

a sequence of words in order as a command, the LSTM/GRU is well suitable for

this task. Another advantage of LSTM/GRU is that they can model the long-

term dependencies in the input features and the output words. In practice, we

conduct experiments with the LSTM and GRU network as our RNN, while the

input visual features are extracted from the VGG16, Inception v3, and ResNet50

network, respectively.

In the encoding stage, the first LSTM/GRU layer converts the visual features

X = (x1,x2, ...,xn) to a list of hidden state vectors He = (he1,h
e
2, ...,h

e
n) (using

Equation 2.2 for LSTM or Equation 2.3 for GRU). Unlike (Venugopalan et al.,

2014) which takes the average of all n hidden state vectors to create a fixed-length
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vector, we directly use each hidden vector hei as the input xdi for the second decoder

layer. This allows the smooth transaction from the visual features to the output

commands without worrying about the harsh average pooling operation, which can

lead to the loss of temporal structure underlying the input video.

In the decoding stage, the second LSTM/GRU layer converts the list of hidden

encoder vectors He into the sequence of hidden decoder vectors Hd. The final list

of predicted words Ŷ is achieved by applying a softmax layer on the output Hd of

the LSTM/GRU decoder layer. In particular, at each time step t, the output zt of

each LSTM/GRU cell in the decoder layer is passed though a linear prediction layer

ŷ = Wzzt + bz, and the predicted distribution P (yt) is computed by taking the

softmax of ŷt as follows:

P (yt = w|zt) =
exp(ŷt,w)∑

w′∈D exp(ŷt,w′)
(4.3)

where Wz and bz are learned parameters, w is a word in the dictionary D.

In this way, the LSTM/GRU decoder layer sequentially generates a conditional

probability distribution for each word of the output command given the encoded

features representation and all the previously generated words. In practice, we

preprocess the data so that the number of input words m is equal to the number of

input frames n. For the input video, this is done by uniformly sampling n frames

in the long video, or padding the extra frame if the video is too short. Since the

number of words m in the input commands is always smaller than n, we pad a

special empty word to the list until we have n words.

4.4.2 Training

The network is trained end-to-end with Adam optimizer (Kingma and Ba, 2014)

using the following objective function:

arg max
θ

m∑
i=1

logP (yi|yi−1, ...,y1; θ) (4.4)

where θ represents the parameters of the network.

During the training phase, at each time step t, the input feature xt is fed to an

LSTM/GRU cell in the encoder layer along with the previous hidden state het−1 to
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produce the current hidden state het . After all the input features are exhausted,

the word embedding and the hidden states of the first LSTM/GRU encoder layer

are fed to the second LSTM/GRU decoder layer. This decoder layer converts the

inputs into a sequence of words by maximizing the log-likelihood of the predicted

word (Equation 4.4). This decoding process is performed sequentially for each word

until the network generates the end-of-command (EOC) token.

4.5 V2CNet Architecture

CNN CNN CNNCNN

LSTM/GRU LSTM/GRU LSTM/GRULSTM/GRU

LSTM/GRU LSTM/GRU LSTM/GRULSTM/GRU

LSTM/GRU LSTM/GRU LSTM/GRULSTM/GRU

LSTM/GRU LSTM/GRU LSTM/GRULSTM/GRU

CNN CNN CNNCNN

righthand pour water EOC

w1 w2 w3 ...

x1 x2 x3 ... xn

wn

Fully Connected

pouring

x1 x2 x3 ... xn

TCN TCN TCN TCN TCN TCN TCN TCN

TCN TCN TCN TCN

TCN TCN

Fig. 4.2. A detailed illustration of our V2CNet architecture. The network is com-
posed of two branches: a classification branch and a translation branch. The input
for both branches is the visual features extracted by CNN. The classification branch
uses the input features to learn the action through a TCN network. The transla-
tion branch has the encoder-decoder architecture with two LSTM/GRU layers. The
first LSTM/GRU layer is used to encode the visual features, then the input words
are combined with the output of the first LSTM/GRU layer and fed into the second
LSTM/GRU layer in order to sequentially generate the output words as a command.

Since the S2SNet (Section 4.4) only uses the visual feature, it does not handle the

fine-grained actions effectively. To overcome this limitation, we propose to use the

Temporal Convolutional Networks (TCN) to explicitly classify the human actions.

This TCN network can be considered as an action attention mechanism since it does

not focus on the visual part of the data, but deeply encodes the fine-grained actions

that humans are performing in the videos.

Based on the aforementioned observation, we design a network with two branches:

a translation branch that interprets videos to commands using a RNN network, and
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an action classification branch that classifies the fine-grained human actions with a

TCN network. The intuition of our design is that since both the classification and

translation branches are jointly trained using a single loss function, the parameters of

both branches are updated using the same gradient signal through backpropagation.

Therefore, the classification branch will encourage the translation branch to generate

the correct fine-grained action, which is the key information to understand human

demonstrations. We experimentally demonstrate that by jointly train both branches,

the translation results are significantly improved.

To simultaneously generate the command sentence and classify the fine-grained ac-

tions, we design a deep network with two branches: a classification branch and a

translation branch. The classification branch is a TCN network that handles the

human action, while the translation branch is a RNN with encoder-decode archi-

tecture to encode the visual features and sequentially generate the output words as

a command. Both branches share the input visual features from the video frames

and are trained end-to-end together using a single multi-task loss function. Our

intuition is that since the translation branch has to generate the command from a

huge space of words, it may not effectively encode the fine-grain actions. Therefore,

we integrate the classification branch which is trained directly on the smaller space

of action classes to ease the learning process. In practice, the parameters of both

branches are updated using the same gradient signal, hence the classification branch

will encourage the translation branch to generate the correct fine-grained action.

Fig. 4.2 illustrates the details of our V2CNet network.

4.5.1 Fine-grained Action Classification

We employ a TCN network in the classification branch to encode the temporal

information of the video in order to classify the fine-grained actions. Unlike the

popular 2D convolution that operates on the 2D feature map of the image, the

TCN network performs the convolution across the time axis of the data. Since

each video is represented as a sequence of frames and the fine-grained action is

the key information for the learning process, using the TCN network to encode

this information is a natural choice. Recent work showed that the TCN network

can further improve the results in many tasks such as action segmentation and

detection (Sun et al., 2015; Lea et al., 2017).

The input of the classification branch is a set of visual features extracted from the

video frames by a pretrained CNN. The output of this branch is a classification score
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that indicates the most probable action for the input video. In practice, we build

a TCN with three convolutional layers to classify the fine-grained actions. After

each convolutional layer, a non-linear activation layer (ReLU) is used, followed by a

max pooling layer to gradually encode the temporal information of the input video.

Here, we notice that instead of performing the max pooling operation in the 2D

feature map, the max pooling of TCN network is performed across the time axis

of the video. Finally, the output of the third convolutional layer is fed into a fully

connected layer with 256 neurons, then the last layer with only 1 neuron is used to

regress the classification score for the current video.

More formally, given the input feature vector X, three convolutional layers Φc of

the TCN network are defined as follows to encode the temporal information across

the time axis of the input demonstration video:

Φc0(Wc0,bc0) = Wc0X + bc0

Φc1(Wc1,bc1) = Wc1(MaxPool(ReLU(Φc0)) + bc1

Φc2(Wc2,bc2) = Wc2(MaxPool(ReLU(Φc1)) + bc2

(4.5)

then the third convolutional layer Φc2 is fed into a fully connected layer Φf0 as

follows:

Φf0(Wf0,bf0) = Wf0(ReLU(Φc2)) + bf0

Φf1(Wf1,bf1) = Wf1Φf0 + bf1

(4.6)

where Wc, bc and Wf , bf are the weight and bias of the convolutional and fully

connected layers. In practice, the filter parameters of three convolutional layers

Φc0, Φc1, Φc2 are empirically set to 2048, 1024, and 512, respectively. Note that,

the ReLU activation is used in the first fully-connected Φf0 layer, while there is no

activation in the last fully connected layer Φf1 since we want this layer outputs a

probability of the classification score for each fine-grained action class.

4.5.2 Command Generation

In parallel with the classification branch, we build a translation branch to generate

the command sentence from the input video. The architecture of our translation

branch is identical to the one we used in the S2SNet. However, since the translation

branch is jointly trained with classification branch, it is encouraged to output the

correct fine-grained action as learned by the classification branch. We experimentally
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show that by simultaneously training both branches, the translation accuracy is

significantly improved over the state of the art.

4.5.3 Multi-Task Loss

We train the V2CNet using a joint loss function for both the classification and

translation branches as follows:

L = Lcls + Ltrans (4.7)

where the Lcls loss is defined in the classification branch for fine-grained action

classification, and Ltrans is defined in the RNN branch for command generation as

in the S2S architecture.

Specially, Lcls is the sigmoid cross entropy loss over the groundtruth action classes

C, and is defined as follows:

Lcls = −
C∑
i=1

yai log(ŷai ) (4.8)

where ya is the groundtruth action label of the current input video, and ŷa is the

predicted action output of the classification branch of the network.

4.5.4 Training and Inference

During the training phase, the classification branch uses the visual features to learn

the fine-grained actions using the TCN network. In parallel with the classification

branch, the translation branch also receives the input via its first LSTM/GRU layer.

In particular, at each time step t, the input feature xt is fed to an LSTM/GRU

cell in the first LSTM/GRU layer along with the previous hidden state het−1 to

produce the current hidden state het . After all the input features are exhausted, the

word embedding and the hidden states of the first LSTM/GRU layer are fed to the

second LSTM/GRU layer. This layer converts the inputs into a sequence of words

by maximizing the log-likelihood of the predicted word. This decoding process is

performed sequentially for each word until the network generates the EOC token.

Since both the classification and translation branches are jointly trained using a

single loss function, the weight and bias parameters of both branches are updated

using the same gradient signal through backpropagation.
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During the inference phase, the input for the network is only the visual features of

the testing video. The classification branch uses these visual features to generate

the probabilities for all action classes. The final action class is chosen from the

class with the highest classification score. Similarly, the visual features are fed into

two LSTM/GRU layers to sequentially generate the output words as the command.

Note that, unlike the training process, during inference the input for the second

LSTM/GRU layer in the translation branch is only the hidden state of the first

LSTM/GRU layer. The final command sentence is composed of the first generated

word and the last word before the EOC token.

4.6 Experiments

4.6.1 Dataset

Recently, many datasets have been proposed in the video captioning field (Xu et al.,

2016). However, these datasets only provide general descriptions of the video and

there is no detailed understanding of the action. The groundtruth captions are also

written using natural language sentences which can not be used directly in robotic

applications. Motivated by these limitations, we introduce a new video-to-command

(IIT-V2C) dataset which focuses on fine-grained action understanding (Lea et al.,

2016). Our goal is to create a new large-scale dataset that provides fine-grained

understanding of human actions in a grammar-free format. This is more suitable

for robotic applications and can be used with deep learning methods.

Video annotation Since our main purpose in this work is to develop a framework

that can be used by real robots for manipulation tasks, we are only interested in

the videos that have human demonstrations. To this end, the raw videos in the

Breakfast dataset (Kuehne et al., 2014) are best suited to our purpose since they

were originally designed for activity recognition. We only reuse the raw videos from

the Breakfast dataset and manually segment each video into short clips in a fine

granularity level. Each short clip is then annotated with a command sentence in

grammar-free that describes the current human action. For each command sentence,

we use the Stanford POS Tagger (Toutanova et al., 2003) to automatically extract

the verb from the command. This extracted verb is then considered as the fine-

grained action groundtruth for the current video.

Dataset statistics Overall, we reuse 419 videos from the Breakfast dataset. These
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Command: lefthand transfer powder to bowl Action: transferring

Command: lefthand carry salt box Action: carrying

Command: righthand pour milk Action: pouring

Command: bothhand cut apple Action: cutting

Fig. 4.3. Example of human demonstration clips and labeled groundtruths for the
command sentence and fine-grained action class in our IIT-V2C dataset. The clips
were recorded from challenging viewpoints with different lighting conditions.

videos were captured when humans performed cooking tasks in different kitchens,

then encoded with 15 frames per second. The resolution of demonstration videos is

320× 240. We segment each video (approximately 2− 3 minutes long) into around

10− 50 short clips (approximately 1− 15 seconds long), resulting in 11, 000 unique

short videos. Each short video has a single command sentence that describes human

actions. From the groundtruth command sentence, we extract the verb as the action

class for each video, resulting in an action set with 46 classes (e.g., cutting, pouring,

etc.). Fig. 4.3 shows some example frames of groudtruth command sentences and

action classes in our new dataset. In Fig. 4.4, the distribution of the fine-grained

action classes is also presented. Although our new-form dataset is characterized by

its grammar-free property for the convenience in robotic applications, it can easily

be adapted to classical video captioning task by adding the full natural sentences
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Fig. 4.4. The distribution of the fine-grained action classes in our IIT-AFF dataset.

Table 4.1. The translation results on IIT-V2C dataset.

RNN Feature Bleu 1 Bleu 2 Bleu 3 Bleu 4 METEOR ROUGE L CIDEr

S2VT LSTM VGG16, AlexNet 0.383 0.265 0.201 0.159 0.183 0.382 1.431

S2VT LSTM ResNet50, AlexNet 0.397 0.280 0.219 0.177 0.196 0.401 1.560

SGC LSTM Inception 0.370 0.256 0.198 0.161 0.179 0.371 1.422

SCN LSTM ResNet50, C3D 0.398 0.281 0.219 0.190 0.195 0.399 1.561

S2SNet

LSTM

VGG16 0.372 0.255 0.193 0.159 0.180 0.375 1.395

Inception 0.400 0.286 0.221 0.178 0.194 0.402 1.594

ResNet50 0.398 0.279 0.215 0.174 0.193 0.398 1.550

GRU

VGG16 0.350 0.233 0.173 0.137 0.168 0.351 1.255

Inception 0.391 0.281 0.222 0.188 0.190 0.398 1.588

ResNet50 0.398 0.284 0.220 0.183 0.193 0.399 1.567

V2CNet

LSTM

VGG16 0.391 0.275 0.212 0.174 0.189 0.393 1.528

Inception 0.401 0.289 0.227 0.190 0.196 0.403 1.643

ResNet50 0.406 0.293 0.233 0.199 0.198 0.408 1.656

GRU

VGG16 0.389 0.267 0.208 0.172 0.186 0.387 1.462

Inception 0.402 0.285 0.224 0.189 0.196 0.405 1.618

ResNet50 0.403 0.288 0.226 0.191 0.196 0.403 1.596

as the new groundtruth for each video.

4.6.2 Evaluation and Baseline

Evaluation Metric We use the standard evaluation metrics in the video captioning

field (Xu et al., 2016) (Bleu, METEOR, ROUGE-L, and CIDEr) to report the

translation results of our V2CNet. By using the same evaluation metrics, we can
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directly compare our results with the recent state of the art in the video captioning

field.

Baseline The translation results of our V2CNet are compared with the following

state of the art in the field of video captioning: S2VT (Venugopalan et al., 2016),

SGC (Ramanishka et al., 2017), and SCN (Gan et al., 2017). In S2VT, the authors

used the encoder-decoder architecture with LSTM to encode the visual features

from RGB images (extracted by ResNet50 or VGG16) and optical flow images (ex-

tracted by AlexNet (Krizhevsky et al., 2012)). In SGC, the authors also used the

encoder-decoder architecture and LSTM, however, this work integrated a saliency

guided method as the visual attention mechanism, while the visual features are from

the Inception network. The authors in SCN (Gan et al., 2017) first combined the

visual features from ResNet and temporal features from C3D (Tran et al., 2015) net-

work, then extracted semantic concepts (i.e., tags) from the video frames. All these

features were learned in a LSTM as a semantic recurrent neural network. Finally,

we also compare the V2CNet results with our early work (EDNet (Nguyen et al.,

2018d)). The key difference between EDNet and V2CNet is the EDNet does not use

the TCN network to jointly train the fine-grained action classification branch and

the translation branch as in the V2CNet. For all methods, we use the code provided

by the authors of the associated papers for the fair comparison.

V2CNet Implementation We use 512 hidden units in both LSTM and GRU in

our implementation. The first hidden state of LSTM/GRU is initialized uniformly

in [−0.1, 0.1]. We set the number of frames for each input video at n = 30. Subse-

quently, we consider each command has maximum 30 words. If there are not enough

30 frames/words in the input video/command, we pad the mean frame/empty word

at the end of the list until it reaches 30. The mean frame is composed of pixels

with the same mean RGB value from the ImageNet dataset (i.e., (104, 117, 124)).

We use 70% of the IIT-V2C dataset for training and the remaining 30% for testing.

During the training phase, we only accumulate the softmax losses of the real words

to the total loss, while the losses from the empty words are ignored. We train all

the variations of V2CNet for 300 epochs using Adam optimizer (Kingma and Ba,

2014) with a learning rate of 0.0001, and the batch size is empirically set to 16. The

training time for each variation of the V2CNet is around 8 hours on an NVIDIA

Titan X GPU.
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4.6.3 Translation Results

Table 4.1 summarizes the translation results on the IIT-V2C dataset. This table

clearly shows that our V2CNet with ResNet50 feature achieves the highest perfor-

mance in all metrics: Blue 1, Blue 2, Blue 3, Blue 4, METEOR, ROUGE L, and

CIDEr. Our proposed V2CNet also outperforms recent the state-of-the-art methods

in the video captioning field (S2VT, SGC, and SCN) by a substantial margin. In

particular, the best CIDEr score of V2CNet is 1.656, while the CIDEr score of the

closest runner-up SCN is only 1.561. Furthermore, compared with the results by

EDNet, V2CNet also shows a significant improvement in all experiments when dif-

ferent RNN types (i.e., LSTM or GRU) or visual features (i.e., VGG16, Inception,

ResNet50) are used. These results demonstrate that by jointly learning both the

fine-grained actions and the commands, the V2CNet can effectively encode both

the visual features to generate the commands while is able to understand the fine-

grained action from the demonstration videos. Therefore, the translation results are

significantly improved.

Overall, we have observed a consistent improvement of our proposed V2CNet over

EDNet in all variation setups. The improvement is most significant when the VGG16

feature is used. In particular, while the results of EDNet using VGG16 feature

with both LSTM and GRU networks are relatively low, our V2CNet shows a clear

improvement in these cases. For example, the Blue 1 scores of EDNet using VGG16

feature are only 0.372 and 0.350 with the LSTM and GRU network respectively,

while with the same setup, the V2CNet results are 0.391 and 0.389. We also notice

that since EDNet only focuses on the translation process, it shows a substantial

gap in the results between the VGG16 feature and two other features. However,

this gap is gradually reduced in the V2CNet results. This demonstrates that the

fine-grained action information in the video plays an important role in the task

of translating videos to commands, and the overall performance can be further

improved by learning the fine-grained actions.

From this experiment, we notice that there are three main factors that affect the

results: the translation architecture, the input visual feature, and the external mech-

anism such as visual or action attention. While the encoder-decoder architecture

is widely used to interpret videos to sentences, recent works focus on exploring the

use of robust features and attention mechanism to improve the results. Since the

IIT-V2C dataset contains mainly the fine-grained human demonstrations, the visual

attention mechanism (such as in SGC architecture) does not perform well as in the
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normal video captioning task. On the other hand, the action attention mechanism

and the input visual features strongly affect the final results. Our experiments show

that the use of TCN network as the action attention mechanism clearly improves

the translation results. In general, we note that the temporal information of the

video plays an important role in this tasks. By extracting this information offline

(e.g., from optical flow images as in S2VT, or with C3D network as in SCN), or

learning it online as in our V2CNet, the translation results can be further improved.

Fig. 4.5 shows some comparisons between the commands generated by our V2CNet

and other methods, compared with the groundtruth on the test videos of the IIT-

V2C dataset. In general, our V2CNet is able to generate good predictions in many

examples, while the results of other methods are more variable. In comparison with

EDNet, V2CNet shows more generated commands with the correct fine-grained

actions. We notice that in addition to the generated commands that are identical

with the groundtruth, many other output commands are relevant. These qualitative

results show that our V2CNet can further improve the translation results. However,

there are still many wrong predictions in the results of all the methods. Since the

IIT-V2C dataset contains the fine-grained actions, while the visual information is

also difficult (e.g, the relevant objects are small and usually are covered by the hand,

etc.). This makes the problem of translating videos to commands is more challenging

than the normal video captioning task since the network has to rely on the minimal

information to predict the command sentence.

To conclude, the extensive experiments using different feature extraction methods

and RNNs show that our V2CNet successfully encodes the visual features and gen-

erates the associated command for each video. Our proposed method also outper-

forms recent state of the art by a substantial margin. The key idea that improves

the translation results is the integration of the TCN network into the traditional

encoder-decoder architecture to effectively learn the fine-grained actions in the video.

4.6.4 Ablation Studies

Although the traditional captioning metrics such as Bleu, METEOR, ROUGE L,

and CIDEr give us the quantitative evaluation about the translation results, they use

all the words in the generated commands for the evaluation, hence do not provide

details about the accuracy of the fine-grained human actions. To analyze the pre-

diction accuracy of the fine-grained actions, we conduct the following experiments:

For both EDNet and V2CNet, we use the LSTM network and the visual features
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GT: righthand carry spatula SGC: lefthand reach stove

S2SNet: righthand carry spatula S2VT: lefthand reach pan

V2CNet: righthand carry spatula SCN: righthand take spatula

GT: righthand cut fruit SGC: righthand cut fruit

S2SNet: righthand cut fruit S2VT: righthand cut fruit

V2CNet: righthand cut fruit SCN: righthand cut fruit

GT: righthand crack egg SGC: lefthand reach spatula

S2SNet: righthand carry egg S2VT: righthand carry egg

V2CNet: righthand crack egg SCN: lefthand carry egg

GT: righthand stir milk SGC: righthand place kettle

S2SNet: righthand hold teabag S2VT: righthand take cacao

V2CNet: righthand stir coffee SCN: righthand stir milk

GT: lefthand take butter box SGC: righthand place kettle

S2SNet: lefthand reach teabag S2VT: righthand take kettle

V2CNet: lefthand take topping SCN: lefthand reach milk bottle

Fig. 4.5. Example of translation results of our S2SNet, V2CNet, and other methods
in comparison with the groundtruth (GT).
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from the VGG16, Inception, and ResNet to generate both the commands from the

translation branch, and the action class from the classification branch. The pre-

dicted actions of the translation branch are then automatically extracted by using

the Stanford POS Tagger (Toutanova et al., 2003) to select the verb from the gen-

erated commands, while the classification branch gives us directly the fine-grained

action class. For each variation of the networks, we report the success rate of the

predicted output as the percentage of the correct predictions over all the testing

clips. Intuitively, this experiment evaluates the accuracy of the fine-grained action

prediction when we consider the translation branch also outputs the fine-grained

action classes.

Table 4.2. The fine-grained action classification success rate.

Feature Success Rate

S2SNet (Nguyen et al., 2018d)

VGG16 30.17%

Inception 32.88%

ResNet50 32.71%

V2CNet
(translation branch)

VGG16 31.75%

Inception 34.41%

ResNet50 34.81%

V2CNet
(classification branch)

VGG16 31.94%

Inception 34.52%

ResNet50 34.69%

Table 4.2 summaries the success rate of the fine-grained action classification results.

Overall, we observe a consistent improvement of V2CNet over EDNet in all experi-

ments using different visual features. In particular, when the actions are extracted

from the generated commands of the translation branch in V2CNet, we achieve the

highest success rate of 34.81% with the ResNet50 features. This is a 2.1% improve-

ment over EDNet with ResNet50 features, and 4.64% over EDNet with VGG16

features. While Table 4.2 shows that the V2CNet clearly outperforms EDNet in all

variation setups, the results of the translation branch and classification branch of

V2CNet are a tie. These results demonstrate that the use of the TCN network in

the classification branch is necessary for improving both the translation and clas-

sification accuracy. However, the overall classification success rate is relatively low

and the problem of translating videos to commands still remains very challenging

since it requires the understanding of the fine-grained actions.
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4.6.5 Robotic Applications

Similar to (Yang et al., 2015), our long-term goal is to develop a framework that

allows the robot to perform various manipulation tasks by just “watching” the input

video. While the V2CNet is able to interpret a demonstration video to a command,

the robot still needs more information such as scene understanding (e.g., object

affordance, grasping frame, etc.), and trajectory planner to complete a manipulation

task. In this work, we build a framework based on three basic components: action

understanding, affordance detection, and trajectory generation. In practice, the

proposed V2CNet is first used to let the robot understand the human demonstration

from a video, then the AffordanceNet (Nguyen et al., 2018a) which is trained on IIT-

AFF dataset (Nguyen et al., 2017b) is used to localize the object affordances and

the grasping frames. Finally, the motion planner is used to generate the trajectory

for the robot in order to complete the manipulation tasks.

(a) Pick and place task using WALK-MAN

(b) Pouring task using WALK-MAN

(c) Pick and place task using UR5 arm

Fig. 4.6. Example of manipulation tasks performed by WALK-MAN and UR5 arm
using our proposed framework: (a) Pick and place task using WALK-MAN, (b)
Pouring task using WALK-MAN, and (c) Pick and place task using UR5 arm.
The frames from human instruction videos are on the left side, while the robot
performs actions on the right side. We notice that there are two sub-tasks (i.e.,
two commands) in these tasks: grasping the object and manipulating it. More
illustrations can be found in the supplemental video.
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We conduct the experiments using two robotic platforms: WALK-MAN (Tsagarakis

et al., 2017) humanoid robot and UR5 arm. WALK-MAN is a full-size humanoid

robot with 31 DoF and two underactuated hands. Each hand has five fingers but

only 1 DoF, and is controlled by one single motor. Therefore, it can only simultane-

ously generate the open-close grasping motion of all five fingers. We use XBotCore

software architecture (Muratore et al., 2017) to handle the communication with the

robot, while the full-body motion is planned by OpenSoT library (Rocchi et al.,

2015). The vision system of WALK-MAN is equipped with a Multisense SL cam-

era, while in UR5 arm we use a RealSense camera to provide visual data for the

robot. Due to the hardware limitation of the end-effector in both robots, we only

demonstrate the tasks that do not require precise skills of the fingers (e.g., cut-

ting, hammering), and assume that the motion planning library can provide feasible

solutions during the execution.

For each task presented by a demonstration video, V2CNet first generates a com-

mand sentence, then based on this command the robot uses its vision system to

find relevant objects and plan the actions. Fig. 4.6 shows some tasks performed by

WALK-MAN and UR5 arm using our framework. For a simple task such as “right-

hand grasp bottle”, the robots can effectively repeat the human action through the

command. Since the output of our translation module is in grammar-free format, we

can directly map each word in the command sentence to the real robot command. In

this way, we avoid using other modules as in (Tellex et al., 2011) to parse the natural

command into the one that uses in the real robot. The visual system also plays an

important role in our framework since it provides the target frames (e.g., grasping

frame, ending frame) for the planner. Using our approach, the robots can also com-

plete long manipulation tasks by stacking a list of demonstration videos in order

for the translation module. Note that, for the long manipulation tasks, we assume

that the ending state of one task will be the starting state of the next task. Overall,

the robots successfully perform various tasks such as grasping, pick and place, or

pouring. Our experimental video is available at: https://sites.google.com/site/v2cnetwork.

 https://sites.google.com/site/v2cnetwork
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Conclusion

Despite recent rapid progress in computer vision and deep learning, it is clear that

many challenges still remain in the field of robotic vision. In this work, we proposed

different approaches for two fundamental robotic vision problems: affordance detec-

tion and fine-grained action understanding. The experimental results on publicly

available datasets show that our methods not only achieve state-of-the-art perfor-

mance but also can be used in various manipulation tasks.

Currently, our AffordanceNet architecture provides a good solution to detect object

affordances in both real and simulation images. It processes the input image at

150ms on a modern GPU, and well suitable for manipulation applications with

the real robot or in simulation. However, the main limitation of AffordanceNet is

it still requires a huge amount of memory during the training and testing phases.

This is because of the use of a series of deconvolutional layers in our architecture.

Therefore, an interesting future research direction on this task is to develop a new

compact architecture that can maintain the accuracy while uses less memory.

In this work, we divide the robot imitation task into two steps: the understanding

step and the imitation step. We form the understanding step as a fine-grained video

captioning task and solve it as a visual translation problem. From the extensive

experiments on the IIT-V2C dataset, we have observed that the translation accuracy

not only depends on the visual information of each frame but also depends on

the temporal information across the video. By using the TCN network to encode

the temporal information, we achieved a significant improvement over the state of

the art. Despite this improvement, we acknowledge that this task remains very

challenging since it requires the fine-grained understanding of human actions, which

61
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is still an unsolved problem in computer vision (Lea et al., 2016).

From a robotic point of view, by explicitly representing the human demonstration

as a command then combining it with the vision and planning module, we do not

have to handle the domain shift problem (Yu et al., 2018) in the real experiment.

Another advantage of this approach is we can reuse the strong state-of-the-art results

from the vision and planning fields. However, its main drawback is the reliance

on the accuracy of each component, which may become the bottleneck in real-

world applications. For example, our framework currently relies solely on the vision

system to provide the grasping frames and other useful information for the robot.

Although recent advances in deep learning allow us to have powerful recognition

systems, these methods are still limited by the information presented in the training

data, and cannot provide the fully semantic understanding of the scene (Nguyen

et al., 2018a).

From the robotic experiments, we notice that while the vision and planning modules

can produce reasonable results, the translation module is still the weakest part of

the framework since its results are more variable. Furthermore, we can also integrate

the state-of-the-art LfD techniques to the planning module to allow the robots to

perform more useful tasks, especially the ones that require precise skill such as

“cutting” or “hammering”. However, in order to successfully perform these tasks,

the robots also need to be equipped with sufficient end-effector. From a vision point

of view, although our V2CNet can effectively translate videos to commands, the

current network architecture considers each demonstration video equally and does

not take into account the order of these videos. In real-world scenarios, the order of

the actions also plays an important role to complete a task (e.g., “putting on sock”

should happen before “wearing shoe”). Currently, we assume that the order of the

sub-videos in a long manipulation task is known. Therefore, another interesting

problem is to develop a network that can simultaneously segment a long video into

short clips and generate a command sentence for each clip.
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