20 research outputs found

    Evaluating the Representational Hub of Language and Vision Models

    Get PDF
    The multimodal models used in the emerging field at the intersection of computational linguistics and computer vision implement the bottom-up processing of the `Hub and Spoke' architecture proposed in cognitive science to represent how the brain processes and combines multi-sensory inputs. In particular, the Hub is implemented as a neural network encoder. We investigate the effect on this encoder of various vision-and-language tasks proposed in the literature: visual question answering, visual reference resolution, and visually grounded dialogue. To measure the quality of the representations learned by the encoder, we use two kinds of analyses. First, we evaluate the encoder pre-trained on the different vision-and-language tasks on an existing diagnostic task designed to assess multimodal semantic understanding. Second, we carry out a battery of analyses aimed at studying how the encoder merges and exploits the two modalities.Comment: Accepted to IWCS 201

    MuST-Cinema: a Speech-to-Subtitles corpus

    Full text link
    Growing needs in localising audiovisual content in multiple languages through subtitles call for the development of automatic solutions for human subtitling. Neural Machine Translation (NMT) can contribute to the automatisation of subtitling, facilitating the work of human subtitlers and reducing turn-around times and related costs. NMT requires high-quality, large, task-specific training data. The existing subtitling corpora, however, are missing both alignments to the source language audio and important information about subtitle breaks. This poses a significant limitation for developing efficient automatic approaches for subtitling, since the length and form of a subtitle directly depends on the duration of the utterance. In this work, we present MuST-Cinema, a multilingual speech translation corpus built from TED subtitles. The corpus is comprised of (audio, transcription, translation) triplets. Subtitle breaks are preserved by inserting special symbols. We show that the corpus can be used to build models that efficiently segment sentences into subtitles and propose a method for annotating existing subtitling corpora with subtitle breaks, conforming to the constraint of length.Comment: Accepted at LREC 202

    Emergent Communication Pretraining for Few-Shot Machine Translation

    Full text link
    While state-of-the-art models that rely upon massively multilingual pretrained encoders achieve sample efficiency in downstream applications, they still require abundant amounts of unlabelled text. Nevertheless, most of the world's languages lack such resources. Hence, we investigate a more radical form of unsupervised knowledge transfer in the absence of linguistic data. In particular, for the first time we pretrain neural networks via emergent communication from referential games. Our key assumption is that grounding communication on images---as a crude approximation of real-world environments---inductively biases the model towards learning natural languages. On the one hand, we show that this substantially benefits machine translation in few-shot settings. On the other hand, this also provides an extrinsic evaluation protocol to probe the properties of emergent languages ex vitro. Intuitively, the closer they are to natural languages, the higher the gains from pretraining on them should be. For instance, in this work we measure the influence of communication success and maximum sequence length on downstream performances. Finally, we introduce a customised adapter layer and annealing strategies for the regulariser of maximum-a-posteriori inference during fine-tuning. These turn out to be crucial to facilitate knowledge transfer and prevent catastrophic forgetting. Compared to a recurrent baseline, our method yields gains of 59.0%59.0\%\sim147.6%147.6\% in BLEU score with only 500500 NMT training instances and 65.1%65.1\%\sim196.7%196.7\% with 1,0001,000 NMT training instances across four language pairs. These proof-of-concept results reveal the potential of emergent communication pretraining for both natural language processing tasks in resource-poor settings and extrinsic evaluation of artificial languages

    Dynamic Context-guided Capsule Network for Multimodal Machine Translation

    Full text link
    Multimodal machine translation (MMT), which mainly focuses on enhancing text-only translation with visual features, has attracted considerable attention from both computer vision and natural language processing communities. Most current MMT models resort to attention mechanism, global context modeling or multimodal joint representation learning to utilize visual features. However, the attention mechanism lacks sufficient semantic interactions between modalities while the other two provide fixed visual context, which is unsuitable for modeling the observed variability when generating translation. To address the above issues, in this paper, we propose a novel Dynamic Context-guided Capsule Network (DCCN) for MMT. Specifically, at each timestep of decoding, we first employ the conventional source-target attention to produce a timestep-specific source-side context vector. Next, DCCN takes this vector as input and uses it to guide the iterative extraction of related visual features via a context-guided dynamic routing mechanism. Particularly, we represent the input image with global and regional visual features, we introduce two parallel DCCNs to model multimodal context vectors with visual features at different granularities. Finally, we obtain two multimodal context vectors, which are fused and incorporated into the decoder for the prediction of the target word. Experimental results on the Multi30K dataset of English-to-German and English-to-French translation demonstrate the superiority of DCCN. Our code is available on https://github.com/DeepLearnXMU/MM-DCCN

    MULE: Multimodal Universal Language Embedding

    Full text link
    Existing vision-language methods typically support two languages at a time at most. In this paper, we present a modular approach which can easily be incorporated into existing vision-language methods in order to support many languages. We accomplish this by learning a single shared Multimodal Universal Language Embedding (MULE) which has been visually-semantically aligned across all languages. Then we learn to relate MULE to visual data as if it were a single language. Our method is not architecture specific, unlike prior work which typically learned separate branches for each language, enabling our approach to easily be adapted to many vision-language methods and tasks. Since MULE learns a single language branch in the multimodal model, we can also scale to support many languages, and languages with fewer annotations can take advantage of the good representation learned from other (more abundant) language data. We demonstrate the effectiveness of MULE on the bidirectional image-sentence retrieval task, supporting up to four languages in a single model. In addition, we show that Machine Translation can be used for data augmentation in multilingual learning, which, combined with MULE, improves mean recall by up to 21.9% on a single-language compared to prior work, with the most significant gains seen on languages with relatively few annotations. Our code is publicly available.Comment: Accepted as an oral at AAAI 202

    WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning

    Full text link
    The milestone improvements brought about by deep representation learning and pre-training techniques have led to large performance gains across downstream NLP, IR and Vision tasks. Multimodal modeling techniques aim to leverage large high-quality visio-linguistic datasets for learning complementary information (across image and text modalities). In this paper, we introduce the Wikipedia-based Image Text (WIT) Dataset (https://github.com/google-research-datasets/wit) to better facilitate multimodal, multilingual learning. WIT is composed of a curated set of 37.6 million entity rich image-text examples with 11.5 million unique images across 108 Wikipedia languages. Its size enables WIT to be used as a pretraining dataset for multimodal models, as we show when applied to downstream tasks such as image-text retrieval. WIT has four main and unique advantages. First, WIT is the largest multimodal dataset by the number of image-text examples by 3x (at the time of writing). Second, WIT is massively multilingual (first of its kind) with coverage over 100+ languages (each of which has at least 12K examples) and provides cross-lingual texts for many images. Third, WIT represents a more diverse set of concepts and real world entities relative to what previous datasets cover. Lastly, WIT provides a very challenging real-world test set, as we empirically illustrate using an image-text retrieval task as an example
    corecore