13,624 research outputs found

    Finding the "truncated" polynomial that is closest to a function

    Get PDF
    When implementing regular enough functions (e.g., elementary or special functions) on a computing system, we frequently use polynomial approximations. In most cases, the polynomial that best approximates (for a given distance and in a given interval) a function has coefficients that are not exactly representable with a finite number of bits. And yet, the polynomial approximations that are actually implemented do have coefficients that are represented with a finite - and sometimes small - number of bits: this is due to the finiteness of the floating-point representations (for software implementations), and to the need to have small, hence fast and/or inexpensive, multipliers (for hardware implementations). We then have to consider polynomial approximations for which the degree-ii coefficient has at most mim_i fractional bits (in other words, it is a rational number with denominator 2mi2^{m_i}). We provide a general method for finding the best polynomial approximation under this constraint. Then, we suggest refinements than can be used to accelerate our method.Comment: 14 pages, 1 figur

    Linear Theory of Electron-Plasma Waves at Arbitrary Collisionality

    Get PDF
    The dynamics of electron-plasma waves are described at arbitrary collisionality by considering the full Coulomb collision operator. The description is based on a Hermite-Laguerre decomposition of the velocity dependence of the electron distribution function. The damping rate, frequency, and eigenmode spectrum of electron-plasma waves are found as functions of the collision frequency and wavelength. A comparison is made between the collisionless Landau damping limit, the Lenard-Bernstein and Dougherty collision operators, and the electron-ion collision operator, finding large deviations in the damping rates and eigenmode spectra. A purely damped entropy mode, characteristic of a plasma where pitch-angle scattering effects are dominant with respect to collisionless effects, is shown to emerge numerically, and its dispersion relation is analytically derived. It is shown that such a mode is absent when simplified collision operators are used, and that like-particle collisions strongly influence the damping rate of the entropy mode.Comment: 23 pages, 10 figures, accepted for publication on Journal of Plasma Physic

    Decoding by Sampling: A Randomized Lattice Algorithm for Bounded Distance Decoding

    Full text link
    Despite its reduced complexity, lattice reduction-aided decoding exhibits a widening gap to maximum-likelihood (ML) performance as the dimension increases. To improve its performance, this paper presents randomized lattice decoding based on Klein's sampling technique, which is a randomized version of Babai's nearest plane algorithm (i.e., successive interference cancelation (SIC)). To find the closest lattice point, Klein's algorithm is used to sample some lattice points and the closest among those samples is chosen. Lattice reduction increases the probability of finding the closest lattice point, and only needs to be run once during pre-processing. Further, the sampling can operate very efficiently in parallel. The technical contribution of this paper is two-fold: we analyze and optimize the decoding radius of sampling decoding resulting in better error performance than Klein's original algorithm, and propose a very efficient implementation of random rounding. Of particular interest is that a fixed gain in the decoding radius compared to Babai's decoding can be achieved at polynomial complexity. The proposed decoder is useful for moderate dimensions where sphere decoding becomes computationally intensive, while lattice reduction-aided decoding starts to suffer considerable loss. Simulation results demonstrate near-ML performance is achieved by a moderate number of samples, even if the dimension is as high as 32

    Complexity of Discrete Energy Minimization Problems

    Full text link
    Discrete energy minimization is widely-used in computer vision and machine learning for problems such as MAP inference in graphical models. The problem, in general, is notoriously intractable, and finding the global optimal solution is known to be NP-hard. However, is it possible to approximate this problem with a reasonable ratio bound on the solution quality in polynomial time? We show in this paper that the answer is no. Specifically, we show that general energy minimization, even in the 2-label pairwise case, and planar energy minimization with three or more labels are exp-APX-complete. This finding rules out the existence of any approximation algorithm with a sub-exponential approximation ratio in the input size for these two problems, including constant factor approximations. Moreover, we collect and review the computational complexity of several subclass problems and arrange them on a complexity scale consisting of three major complexity classes -- PO, APX, and exp-APX, corresponding to problems that are solvable, approximable, and inapproximable in polynomial time. Problems in the first two complexity classes can serve as alternative tractable formulations to the inapproximable ones. This paper can help vision researchers to select an appropriate model for an application or guide them in designing new algorithms.Comment: ECCV'16 accepte
    • …
    corecore