656 research outputs found

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    Oriented Matroids -- Combinatorial Structures Underlying Loop Quantum Gravity

    Full text link
    We analyze combinatorial structures which play a central role in determining spectral properties of the volume operator in loop quantum gravity (LQG). These structures encode geometrical information of the embedding of arbitrary valence vertices of a graph in 3-dimensional Riemannian space, and can be represented by sign strings containing relative orientations of embedded edges. We demonstrate that these signature factors are a special representation of the general mathematical concept of an oriented matroid. Moreover, we show that oriented matroids can also be used to describe the topology (connectedness) of directed graphs. Hence the mathematical methods developed for oriented matroids can be applied to the difficult combinatorics of embedded graphs underlying the construction of LQG. As a first application we revisit the analysis of [4-5], and find that enumeration of all possible sign configurations used there is equivalent to enumerating all realizable oriented matroids of rank 3, and thus can be greatly simplified. We find that for 7-valent vertices having no coplanar triples of edge tangents, the smallest non-zero eigenvalue of the volume spectrum does not grow as one increases the maximum spin \jmax at the vertex, for any orientation of the edge tangents. This indicates that, in contrast to the area operator, considering large \jmax does not necessarily imply large volume eigenvalues. In addition we give an outlook to possible starting points for rewriting the combinatorics of LQG in terms of oriented matroids.Comment: 43 pages, 26 figures, LaTeX. Version published in CQG. Typos corrected, presentation slightly extende

    Determinantal Sieving

    Full text link
    We introduce determinantal sieving, a new, remarkably powerful tool in the toolbox of algebraic FPT algorithms. Given a polynomial P(X)P(X) on a set of variables X={x1,,xn}X=\{x_1,\ldots,x_n\} and a linear matroid M=(X,I)M=(X,\mathcal{I}) of rank kk, both over a field F\mathbb{F} of characteristic 2, in 2k2^k evaluations we can sieve for those terms in the monomial expansion of PP which are multilinear and whose support is a basis for MM. Alternatively, using 2k2^k evaluations of PP we can sieve for those monomials whose odd support spans MM. Applying this framework, we improve on a range of algebraic FPT algorithms, such as: 1. Solving qq-Matroid Intersection in time O(2(q2)k)O^*(2^{(q-2)k}) and qq-Matroid Parity in time O(2qk)O^*(2^{qk}), improving on O(4qk)O^*(4^{qk}) (Brand and Pratt, ICALP 2021) 2. TT-Cycle, Colourful (s,t)(s,t)-Path, Colourful (S,T)(S,T)-Linkage in undirected graphs, and the more general Rank kk (S,T)(S,T)-Linkage problem, all in O(2k)O^*(2^k) time, improving on O(2k+S)O^*(2^{k+|S|}) respectively O(2S+O(k2log(k+F)))O^*(2^{|S|+O(k^2 \log(k+|\mathbb{F}|))}) (Fomin et al., SODA 2023) 3. Many instances of the Diverse X paradigm, finding a collection of rr solutions to a problem with a minimum mutual distance of dd in time O(2r(r1)d/2)O^*(2^{r(r-1)d/2}), improving solutions for kk-Distinct Branchings from time 2O(klogk)2^{O(k \log k)} to O(2k)O^*(2^k) (Bang-Jensen et al., ESA 2021), and for Diverse Perfect Matchings from O(22O(rd))O^*(2^{2^{O(rd)}}) to O(2r2d/2)O^*(2^{r^2d/2}) (Fomin et al., STACS 2021) All matroids are assumed to be represented over a field of characteristic 2. Over general fields, we achieve similar results at the cost of using exponential space by working over the exterior algebra. For a class of arithmetic circuits we call strongly monotone, this is even achieved without any loss of running time. However, the odd support sieving result appears to be specific to working over characteristic 2
    corecore