3 research outputs found

    Finding Robust Strategies to Defeat Specific Opponents Using Case-Injected Coevolution

    No full text
    Abstract—Finding robust solutions that are also capable of beating specific opponents presents a challenging problem. This paper investigates solving this problem by using case-injection with a coevolutionary algorithm. Specifically, we recorded winning strategies used by a human player against a coevolved strategy and then injected the player’s strategies into the coevolutionary teachset. We compare the strategies produced by caseinjected coevolution to strategies produced by a genetic algorithm that only evaluated against the player’s strategies. In this paper, our results show that genetic algorithms do not work well against sufficiently difficult opponents. However, coevolution eventually learns to defeat these opponents by first bootstrapping strategies that work well in general, which drives the population closer to strategies that can defeat the challenging opponent. This work informs our research on finding robust real-time strategy game players that also defeat specific opponents. I

    Coevolutionary Approaches to Generating Robust Build-Orders for Real-Time Strategy Games

    Get PDF
    We aim to find winning build-orders for Real-Time Strategy games. Real-Time Strategy games provide a variety of challenges, from short-term control to longer term planning. We focus on a longer-term planning problem; which units to build and in what order to produce the units so a player successfully defeats the opponent. Plans which address unit construction scheduling problems in Real-Time Strategy games are called build-orders. A robust build-order defeats many opponents, while a strong build-order defeats opponents quickly. However, no single build-order defeats all other build-orders, and build-orders that defeat many opponents may still lose against a specific opponent. Other researchers have only investigated generating build-orders that defeat a specific opponent, rather than finding robust, strong build-orders. Additionally, previous research has not applied coevolutionary algorithms towards generating build-orders. In contrast, our research has three main contributions towards finding robust, strong build-orders. First, we apply a coevolutionary algorithm towards finding robust build-orders. Compared to exhaustive search, a genetic algorithm finds the strongest build-orders while a coevolutionary algorithm finds more robust build-orders. Second, we show that case-injection enables coevolution to learn from specific opponents while maintaining robustness. Build-orders produced with coevolution and case-injection learn to defeat or play like the injected build-orders. Third, we show that coevolved build-orders benefit from a representation which includes branches and loops. Coevolution will utilize multiple branches and loops to create build-orders that are stronger than build-orders without loops and branches. We believe this work provides evidence that coevolutionary algorithms may be a viable approach to creating robust, strong build-orders for Real-Time Strategy games

    Online Build-Order Optimization for Real-Time Strategy Agents Using Multi-Objective Evolutionary Algorithms

    Get PDF
    The investigation introduces a novel approach for online build-order optimization in real-time strategy (RTS) games. The goal of our research is to develop an artificial intelligence (AI) RTS planning agent for military critical decision- making education with the ability to perform at an expert human level, as well as to assess a players critical decision- making ability or skill-level. Build-order optimization is modeled as a multi-objective problem (MOP), and solutions are generated utilizing a multi-objective evolutionary algorithm (MOEA) that provides a set of good build-orders to a RTS planning agent. We de ne three research objectives: (1) Design, implement and validate a capability to determine the skill-level of a RTS player. (2) Design, implement and validate a strategic planning tool that produces near expert level build-orders which are an ordered sequence of actions a player can issue to achieve a goal, and (3) Integrate the strategic planning tool into our existing RTS agent framework and an RTS game engine. The skill-level metric we selected provides an original and needed method of evaluating a RTS players skill-level during game play. This metric is a high-level description of how quickly a player executes a strategy versus known players executing the same strategy. Our strategic planning tool combines a game simulator and an MOEA to produce a set of diverse and good build-orders for an RTS agent. Through the integration of case-base reasoning (CBR), planning goals are derived and expert build- orders are injected into a MOEA population. The MOEA then produces a diverse and approximate Pareto front that is integrated into our AI RTS agent framework. Thus, the planning tool provides an innovative online approach for strategic planning in RTS games. Experimentation via the Spring Engine Balanced Annihilation game reveals that the strategic planner is able to discover build-orders that are better than an expert scripted agent and thus achieve faster strategy execution times
    corecore