
University of Nevada, Reno

COEVOLUTIONARY APPROACHES TO GENERATING ROBUST
BUILD-ORDERS FOR REAL-TIME STRATEGY GAMES

A Dissertation Submitted in Partial Fulfillment

of the Requirements for the Degree of Doctor of Philosophy in

Computer Science and Engineering

by

Christopher Ballinger

Dr. Sushil Louis / Dissertation Advisor

December 2014

c© 2014 Christopher Ballinger

ALL RIGHTS RESERVED

UNIVERSITY
OF NEVADA THE GRADUATE SCHOOL
RENO

We recommend that the dissertation prepared
under our supervision by

CHRISTOPHER BALLINGER

entitled

COEVOLUTIONARY APPROACHES TO GENERATING ROBUST

BUILD-ORDERS FOR REAL-TIME STRATEGY GAMES

be accepted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

Sushil Louis, Ph. D. – Advisor

Sergiu Dascalu, Ph. D. – Committee Member

Monica Nicolescu, Ph. D. – Committee Member

Swatee Naik, Ph. D. – Committee Member

Larry Dailey, M. S. – Graduate School Representative

David Zeh, Ph. D. – Dean, Graduate School

December 2014

i

ABSTRACT

We aim to find winning build-orders for Real-Time Strategy games. Real-Time

Strategy games provide a variety of challenges, from short-term control to longer-

term planning. We focus on a longer-term planning problem; which units to build

and in what order to produce the units so a player successfully defeats the oppo-

nent. Plans which address unit construction scheduling problems in Real-Time

Strategy games are called build-orders. A robust build-order defeats many oppo-

nents, while a strong build-order defeats opponents quickly. However, no single

build-order defeats all other build-orders, and build-orders that defeat many op-

ponents may still lose against a specific opponent. Other researchers have only

investigated generating build-orders that defeat a specific opponent, rather than

finding robust, strong build-orders. Additionally, previous research has not ap-

plied coevolutionary algorithms towards generating build-orders. In contrast, our

research has three main contributions towards finding robust, strong build-orders.

First, we apply a coevolutionary algorithm towards finding robust build-orders.

Compared to exhaustive search, a genetic algorithm finds the strongest build-

orders while a coevolutionary algorithm finds more robust build-orders. Second,

we show that case-injection enables coevolution to learn from specific opponents

while maintaining robustness. Build-orders produced with coevolution and case-

injection learn to defeat or play like the injected build-orders. Third, we show that

coevolved build-orders benefit from a representation which includes branches and

loops. Coevolution will utilize multiple branches and loops to create build-orders

that are stronger than build-orders without loops and branches. We believe this

work provides evidence that coevolutionary algorithms may be a viable approach

to creating robust, strong build-orders for Real-Time Strategy games.

ii

ACKNOWLEDGEMENTS

This research is supported by ONR grant N000014-12-C-0522.

iii

TABLE OF CONTENTS

Abstract . i
Acknowledgements . ii
Table of Contents . iii
List of Tables . v
List of Figures . vi

1 Introduction 1
1.1 Challenges of Real-Time Strategy Games 1
1.2 Approach . 4
1.3 Structure of this Thesis . 7

2 Background 9
2.1 Real-Time Strategy Games . 9

2.1.1 Resource Allocation . 10
2.1.2 Force Composition . 12
2.1.3 Decision Making Under Uncertainty 13
2.1.4 Temporal Reasoning . 14

2.2 Genetic Algorithms . 16
2.3 Coevolutionary Algorithms . 22
2.4 Bit-Setting Hill-climber . 23
2.5 Related Work . 24

3 Methodology 28
3.1 Real-Time Strategy Environments . 28

3.1.1 WaterCraft . 29
3.1.2 Build-Order Simulation Software 32
3.1.3 Game Scenario . 34
3.1.4 Baseline Opponents . 35

3.2 Build-Order Representation . 36
3.2.1 Build-Order List . 36
3.2.2 Build-Order Iterative List . 37

3.3 Genetic Algorithm . 40
3.3.1 Teachset . 41
3.3.2 Shared Fitness . 42
3.3.3 Fitness Scaling . 43

3.4 Coevolutionary Algorithm . 45
3.4.1 Shared Sampling . 46
3.4.2 Hall-of-Fame . 47
3.4.3 Case-Injection . 48

3.5 Hill-climber . 51
3.6 Exhaustive Search . 52

iv

4 Phase One: Build-Order Robustness 53
4.1 5-action BOL . 53

4.1.1 Conclusion . 60
4.2 13-action BOL . 61

4.2.1 Conclusions . 69

5 Phase Two: Case-Injection 71
5.1 Teachset Injection . 71

5.1.1 Conclusions . 74
5.2 Population Injection . 76

5.2.1 Conclusions . 81

6 Phase Three: Build-Order Strength 84
6.1 Conclusions . 90

7 Conclusion 92
7.1 Contributions . 94
7.2 Extensions and Future Work . 95

Bibliography 98

v

LIST OF TABLES

3.1 Available unit types and prerequisites 34
3.2 BOL action encodings . 36
3.3 BOIL action encodings . 39

4.1 Avg. score of 13-action BOLs against opponents. 64
4.2 Avg. wins of 13-action BOLs against opponents. 65
4.3 Avg. Command Center kills of 13-action BOLs against opponents. . 67

vi

LIST OF FIGURES

1.1 Intransitive relationships in rock-paper-scissors. 2

2.1 StarCraft. 10
2.2 StarCraft - Fog of War. 13
2.3 Components of a chromosome. 17
2.4 Evaluating a population of chromosomes. 17
2.5 Roulette Wheel Selection. 18
2.6 One-Point Crossover. 19
2.7 Bit-Wise Mutation. 19
2.8 Mutation reintroducing genes extinct in all chromosomes. 20
2.9 Genetic Algorithm generation cycle. 20
2.10 Example of a Bit-Setting Hill-climber. 23

3.1 WaterCraft. 29
3.2 SparCraft. 32
3.3 BOL encoding example. 37
3.4 Two-Condition BOIL encoding example. 38
3.5 Uniform Crossover. 40
3.6 Fitness Scaling on two population fitness distributions. 44

4.1 Win frequency of all 5-action BOLs against three baselines. 54
4.2 Number of losses for each baseline against all 5-action BOLs. 54
4.3 Avg. score of all 5-action BOLs against three baselines. 55
4.4 Avg. score of 5-action BOLs generated by each approach. 56
4.5 Avg. score of CA population against different opponents. 58
4.6 Avg. win rate of CA population against different opponents. 58
4.7 Avg. score of 13-action BOLs against three baselines. 63
4.8 Avg. score of 13-action BOLs against each other. 64
4.9 Avg. number of wins of 13-actions BOLs against each other. 65
4.10 Avg. number of Command Centers destroyed by 13-action BOLs

against each other. 67

5.1 Avg. number of wins of 13-action BOLs against human build-orders. 72
5.2 Avg. score of 13-action BOL build-orders against human build-orders. 73
5.3 Avg. Hamm. Dist. of 13-action BOLs to Case #1. 78
5.4 Avg. Hamm. Dist. of 13-action BOLs to Case #2. 78
5.5 Avg. Hamm. Dist. of 13-action BOLs to Case #3. 79
5.6 Avg. score of 13-action BOLs vs all Testing Cases. 80
5.7 Avg. number of wins of 13-action BOLs vs all Testing Cases. 80

6.1 Comparing 5-action BOL outcomes in WaterCraft and BOSS. 84
6.2 Avg. combat duration of 13-action BOILs. 85

vii

6.3 Avg. wins of 13-action BOILs from different approaches. 87
6.4 Avg. score of 13-action BOILs from different approaches. 87
6.5 Avg. combat duration of 13-action BOILs from different approaches. 89

1

CHAPTER 1

INTRODUCTION

We endeavour to find robust, strong build-orders for Real-Time Strategy games.

Historically, computational intelligence and artificial intelligence research has ben-

efited from advances made in board games such as Backgammon, Checkers (also

known as Draughts), Chess, and Go [54]. Research using games typically focuses

on developing intelligent agents that learn to play games. An intelligent agent is

“...anything that can be viewed as perceiving its environment through sensors

and acting upon that environment through effectors” according to Russell and

Norvig [52]. In the context of game research, the intelligent agent (colloquially

called the game AI) acts as a player in the game with the goal of winning or de-

feating an opponent by addressing problems in the game. In recent years, re-

searchers have turned their attention towards computer games [68, 69]. Computer

games provide researchers with an environment which simulates simplified real-

world problems. Compared to investigating real-world problems directly, com-

puter games allow researchers to easily investigate new approaches to problems

and quickly obtain results from the simulation. While different types of computer

games offer interesting research problems, which we discuss in Chapter 2.5, Real-

Time Strategy (RTS) games present particularly challenging problems [47].

1.1 Challenges of Real-Time Strategy Games

RTS games are simplified military simulators where players manage resources,

expand infrastructure, gather intelligence on the opponent, and build an army

comprised of different military units to destroy their opponent. Players do not

2

Figure 1.1: Intransitive relationships in rock-paper-scissors.

control every minor detail of their army. For instance, a player does not need to

inform a tank which way to point the cannon or order the tank to fire each in-

dividual shot. Instead players focus on strategic planning and give higher-level

commands (such as Build a tank, Move to this position, and Attack the enemy army) to

their army. As a result, the player must handle two broad categories of problems:

micromanagement and macromanagement [47]. Micromanagement deals with the

short-term control problems of quickly interacting with units and organizing unit

positions to maintain an advantage during combat. Macromanagement deals with

the longer-term planning problems of gathering/spending resources, constructing

new units, and expanding control over different territories. Our research investi-

gates macromanagement; specifically, planning which units to build and in what

order to produce the units so a player successfully defeats the opponent. In macro-

management terms, plans created to address construction scheduling problems in

RTS games are called build-orders. Players must find build-orders that produce an

3

army strong enough to defeat their opponent’s army. If a build-order slowly pro-

duces units, or produces units weak against the opponent’s army, then the player

will struggle to win. Before we discuss the details of RTS gameplay, which we

cover in Chapter 2.1, it is important to understand why finding build-orders in

RTS games is an interesting problem.

Players must address difficult problems to find winning build-orders. Intran-

sitive relationships, which the game of Rock-Paper-Scissors exemplifies, makes RTS

games particularly challenging to play. As Figure 1.1 shows, build-order A (Rock)

defeats build-order B (Scissors), but build-order B defeats build-order C (Paper),

which in turn defeats build-order A. As a result, no single dominating build-order

defeats all other build-orders, which makes finding winning build-orders difficult.

Additionally, the number of different unit options available to players creates a

combinatorially explosive number of build-orders and possible game states. With

many different build-orders available for players to explore, we’re interested in

finding robust build-orders which defeat many opponents. In addition to being ro-

bust, we want strong build-orders which defeat opponents quickly. Defeating op-

ponents quickly gives the opponents less opportunity to find and exploit a weak-

ness. However, just because a robust, strong build-order quickly defeats many

opponents does not mean the build-order will defeat a particular opponent we are

interested in. Players must constantly adapt their build-orders to defeat new oppo-

nents. All of the above problems make finding winning build-orders an interesting

and challenging problem which can be addressed using different approaches.

In the past different approaches have been used to address problems in RTS

games. In commercial games, developers typically use finite-state machines or

rule-based systems to solve problems, while researchers have investigated a vari-

4

ety of other methods which we discuss in Chapter 2.5. However, these approaches

focus on predicting an opponent’s choices and adapting in real-time, rather than

finding robust, strong build-orders ahead of time. Coevolution has been success-

fully applied to problems in RTS games, but not specifically towards generating

robust build-orders. We believe that a coevolutionary approach would also be

suitable for finding robust, strong build-orders.

1.2 Approach

A coevolutionary algorithm (CA) tests build-orders against other build-orders pre-

viously found by the CA. Specifically, build-orders are tested by a game AI which

uses the build-orders to compete against opponents in an RTS game. Build-orders

that enable the game AI to win often against the opponents share information with

each other to produce a new set of build-orders with improved robustness and

strength. Because the opponents used for testing are previously coevolved build-

orders, as the CA finds build-orders that are more robust and strong, new build-

orders must complete against more challenging opponents. This creates an arms

race that drives the CA to find robust, strong build-orders. In contrast, genetic

algorithms (GAs) and hill-climbers (HCs) do not bootstrap their own opponents.

Instead, the GA and HC test build-orders against a set of unchanging opponents

that a developer must predefine by hand. Our results indicate competing against

predefined opponents enables the GA and HC to find strong build-orders that de-

feat the predefined opponents, but does not lead to finding robust build-orders.

However, the build-orders that can be found by our approaches depends on how

we represent build-orders.

5

Our research investigates two representations for build-orders: Build-Order

Lists (BOL) and Build-Order Iterative Lists (BOIL). BOL represents build-orders

as a sequence of build-actions that the game AI should perform. BOIL extends

BOL by including a representation for branches and loops. We describe both rep-

resentations in Chapter 3, and began our research using the BOL representation.

In our initial research, we compared the quality of build-orders produced by

a GA, CA, and HC. The GA, CA, and HC must determine what order of build-

actions will allow the game AI to defeat an opponent. However, in order to com-

pare the quality of the build-orders generated by each approach, we needed an ab-

solute measure of quality. Exhaustive search gives us an absolute quality measure,

but we cannot exhaustively search all possible build-orders in a reasonable amount

of time. Instead, we created three baseline build-orders by hand, limited ourselves

to 5-action build-orders, and recorded the outcomes of each 5-action build-order

competing against each baseline in an RTS game. Exhaustively searching the game

outcomes allowed us to rank all possible 5-action build-orders by the number of

wins, and allowed us to compare the rank of build-orders found by the GA, CA,

and HC. We later extended the length our build-orders to 13-actions to match the

length of our longest baseline build-order. Our results showed that with 5-action

and 13-action build-orders, the GA found the highest scoring build-orders that de-

feated the baseline opponents, while the CA found build-orders that were more

robust than the GA or HC build-orders.

Although the build-orders found by our CA defeated more opponents than

build-orders found by the GA and HC, the build-orders may not defeat a spe-

cific opponent. Can we generate build-orders that are robust, yet also defeat a

specific opponent? We investigated this issue by introducing case-injection into

6

coevolution. Case-injection places specific build-orders into coevolution’s set of

opponents. Our results showed case-injection encouraged build-orders to defeat

the injected build-orders, while maintaining robustness. As an additional benefit,

we can also use case-injection to influence build-orders to play like injected build-

orders.

Our results thus far indicated our BOL representation enabled our GA and

CA to find robust, strong build-orders. However, BOL only encodes a single and

limited-length sequence of build-actions. We believe encoding multiple paths and

repeating actions may allow our representation to encode stronger build-orders.

To this end, we expanded the BOL representation to BOIL. BOIL encodes loops

and branches which enables build-orders to contain multiple possible sequences

of build-actions. Build-actions that fall under a loop or branch are only performed

when a predefined condition is met. Branches and loops enables build-orders to

respond to different situations, and more compactly represent longer build-orders.

Our results showed that the BOIL representation allowed the CA to take advantage

of loops and branches and produced stronger build-orders. Our work provides

evidence that coevolutionary algorithms are suitable for producing robust, strong

build-orders for RTS games.

To make the scope of our work clear, note that we do not focus on creating a

game AI. Rather, we only focus on finding build-orders for a game AI. There are

many different ways a player or game AI can make decisions in an RTS game. Ad-

ditionally, there are also many RTS games with different gameplay. However, the

GA, CA, and HC we investigate are independent of the game AI and RTS game.

The GA, CA, and HC do not know or care about how the game AI or RTS game

operate, they simply create build-orders and note the performance of the build-

7

orders reported by the RTS game. Additionally, our work provides three main

contributions towards finding robust, strong build-orders. First, to the best of our

knowledge, our work is the first coevolutionary approach to generating robust

build orders. Second, we show that case-injection enables coevolution to learn

from specific opponents while maintaining robustness. Third, we show that co-

evolved build-orders benefit from a representation which includes branches and

loops. The next section in this chapter reviews the structure of the remainder of

this thesis.

1.3 Structure of this Thesis

The next chapter provides background information on RTS games, our search

methods, and related research . We first describe the rules and challenges in RTS

games, and how RTS macromanagement problems relate to build-orders. Next we

review the definitions of a genetic algorithm, coevolutionary algorithm, and hill-

climber. Finally, we provide an overview of other research involving games. We

cover different types of games used in research, ranging from board games to dif-

ferent types of computer games. Additionally, we cover various approaches used

to address problems in games, including coevolution.

Chapter 3 describes the implementation of our GA, CA, HC, case-injection,

and build-order representation. We also describe the implementation of two RTS

games we created as research platforms: WaterCraft and Build-Order Simulation

Software (BOSS). WaterCraft was initially described in our paper published in the

Proceedings of the 2013 IEEE Symposium Series on Computational Intelligence [4].

Chapter 4 shows the robustness of build-orders produced by our GA, CA, and

8

HC. In this section, we compare build-orders produced by the GA, CA, and HC

to each other and to exhaustive search. Additionally, we also provide results on

extending the length of build-orders. Our initial results comparing the GA and

HC to exhaustive search were published in the Proceedings of the 2013 IEEE Sym-

posium Series on Computational Intelligence, while results comparing the CA to the

GA, HC and exhaustive search were published in the Proceedings of the 2013 Ge-

netic and Evolutionary Computation Conference [4, 3]. The results for increasing the

length of build-orders were published in the Proceedings of the 2013 IEEE Congress

on Evolutionary Computation [6].

Chapter 5 shows the influence of case-injection on coevolution. We analyse

the effects of case-injection on a build-order’s ability to play like injected build-

orders, defeat injected build-orders, and remain robust. The results for using case-

injection to defeat injected build-orders were published in the Proceedings of the

2013 IEEE Conference on Computational Intelligence and Games, while results for using

case-injection to play like injected build-orders were published in the Proceedings

of the 2014 IEEE Conference on Computational Intelligence and Games [5, 7].

Chapter 6 shows how the addition of branches and loops to our build-order

representation influences the strength of coevolved build-orders. We compare

the strength of build-orders that lack branches and loops to build-orders that use

branches and loops. The results for representing branches and loops in our build-

order representation are currently in submission to the 2015 IEEE Transactions on

Computational Intelligence and Artificial Intelligence [8]. Finally, Chapter 7 discusses

our conclusions and possible future work.

9

CHAPTER 2

BACKGROUND

This chapter first details the gameplay and macromanagement problems in RTS

games. We also give an overview of the terminology and definitions of GAs, CAs,

and HCs. Finally, the last section of this chapter reviews work related to game AI

and build-orders.

2.1 Real-Time Strategy Games

RTS games place players in the role of commanding an army. In order to win

players must gather resources, build infrastructure, increase military power, ex-

pand control over the map, gather information on the opponent’s concealed ac-

tivities, and ultimately destroy their opponent’s base while their opponent also

attempts to do all of the above. Compared to board games, RTS games are more

complex. In most board games, each player has their own turn, player actions

take effect immediately with deterministic results, and the board state is fully ob-

servable. However, RTS games are more complex because there are no discrete

player turns and players make moves simultaneously, actions are durative and are

non-deterministic, and the board state is only partially observable. To quantify the

increase in complexity, while Chess has 1050 board states and Go has 10170 board

states, RTS games are estimated to have over (1050)36000 board states to play an en-

tire game to completion, more than the number of protons in the universe [47].

However, the difficulty and challenges players face varies depending on the RTS

game being played.

10

Figure 2.1: StarCraft.

There are many commercially available RTS games, and Blizzard’s StarCraft:

Brood War, shown in Figure 2.1, is among the most successful. As soon the game

begins, players are immediately faced with four longer-term macromanagement

problems: resource allocation, temporal reasoning, force composition, and deci-

sion making under uncertainty. While gameplay varies for different RTS games,

generally RTS games contain these four problems in some form. The following

sections describe how these four problems are presented in RTS gameplay, relate

to the real-world, and affect build-orders.

2.1.1 Resource Allocation

Players start with a limited number of units and resources, preventing players

from immediately taking all the actions necessary to create a strong army. In Star-

Craft, players must instruct their initial units to gather two resources, Vespene Gas

and Minerals. These two resources act as materials to construct new units and

11

buildings. Units allow a player to attack or defend against the opponent’s army,

while buildings allow players to produce new units or research technology that

increases the unit’s strengths. Different buildings and units require different quan-

tities of minerals and gas, so players must determine how many units to dedicate

to harvesting each resource. Players must decide how to allocate their limited

resources between gathering resources faster, constructing more unit-producing

buildings, and reinforcing their army with additional units.

However, dedicating resources towards one objective has trade-offs and op-

portunity costs for other objectives. By expanding your economy and gathering

resources faster, your military power suffers in the short-term but can benefit in

the long-term. In economics, this is a well studied problem called a production

possibilities frontier [43]. A production possibilities frontier represents the pro-

duction trade-offs for manufactured items. For example, in StarCraft if we spend

more resources on producing marines, then we have fewer resources to spend on

producing tanks, and visa-versa. As such, build-orders are directly related to re-

source allocation problems. A build-order determines what buildings and units

to construct, and therefore determine what trade-offs should be made. In order to

win, a build-order must make the right trade-offs at the right time in order expand

the economy while maintaining a military force strong enough to defend the econ-

omy. Build-orders must also determine what units should be added to the military

force.

12

2.1.2 Force Composition

There are many different units the player can build, and each unit has different

costs, abilities, strengths, and weaknesses. In order to succeed, players must con-

struct units that take advantage of weaknesses in the opponent’s army. However,

just as there are intransitive relationships between build-orders, there are intran-

sitive relationships between individual units and no single unit can optimally de-

stroy all other units. Players create armies comprised of different units to avoid

having a single exploitable weakness, making their army harder to destroy. While

players can overwhelm an opponent with shear numbers, players will conserve

time and resources by finding the right mix of counter-units. Similar to resource

allocation, build-orders directly influence force composition by determining what

to build. However, while the effects of resource allocation are more focused on

economical repercussions, force composition affects military and combat perfor-

mance. In order to defeat the opponent, build-orders must select a mix of different

units that will exploit the weaknesses in the opponent’s force composition. Build-

orders which do not exploit opponent weaknesses will defeat fewer enemy units,

lose more allied units, and waste resources. Because different units have different

strengths and weaknesses, players must identify which units their opponent plans

to build, and construct effective counter-units. Determining what units the oppo-

nent has built or plans to build cannot be done easily due to the map only being

partially observable to the player.

13

Figure 2.2: StarCraft - Fog of War.

2.1.3 Decision Making Under Uncertainty

A fog-of-war prevents players from observing opponent activity on the map, except

in locations containing the player’s units. Figure 2.2 shows the three states of the

fog-of-war. Areas around the player’s units are fully revealed, and allow the player

to observe the enemy units and building in the revealed location. Locations where

the player’s units have not visited recently are partially concealed, and show the

state of the map when the player last fully revealed that location. Player’s must

periodically return to partially concealed areas to receive updated information.

Fully concealed locations are areas where the player’s units have never visited, and

reveals no information to the player. Players must dedicate some units to scouting

the map for opponent activity and adjust their building schedule to counter the

opponent’s plan.

Decision making under uncertainty presents a challenging problem for finding

build-orders. Without knowing the opponent’s force composition, a player cannot

14

know what to build in order to perfectly counter the opponent’s units. A player

must rely on experience to determine what choices the opponent might make, and

build units that cover most cases. To this end, build-orders that are robust and

defeat many opponents help the player under uncertain conditions. In addition to

determining what actions to take, the player must also consider when to take the

actions.

2.1.4 Temporal Reasoning

Unlike board games, such as Checkers, where a player’s movement or actions take

immediate effect, movement and actions in RTS games take time into consider-

ation. Players must plan around delays enforced by the RTS game to quickly

build an army and execute actions. There are four time-influenced problems the

player must plan for: movement, persistent actions, cooldown time, and prepara-

tion time.

When players tell their units to move to a new location, the units must travel

some path to reach the destination. Usually there are obstacles obstructing the

units’ path, such as cliffs or boulders. In response to such obstacles, the units must

take additional time to find a detour or destroy the obstacle blocking the path. Ad-

ditionally, different units travel at different speeds, causing the units to arrive at

the destination at different times. When a player plans to attack an opponent’s

base, the player must take their army’s travel time into consideration. While the

player may have the superior army when issuing the movement order, the oppo-

nent may produce additional units and gain the upper hand before the player’s

army reaches the destination. Build-orders must take travel time into considera-

15

tion, in order to assure the opponent’s army will still be defeated when the player’s

army arrives.

Some actions available to players are persistent, meaning the action’s effects

last for a period of time. For example, the Force Field ability allows a player to

place a temporary barrier to block an opponent’s path. However, the temporary

barrier only persists for 15 seconds, and the barrier will disappear after the time

has expired. Not all abilities are persistent, such as the ability Blink which imme-

diately teleports units a short distance and leaves no residual effect. Player using

persistent abilities must determine when to use persistent abilities in order to max-

imum their effect. Meanwhile, opponents must determine what counter-actions to

take during and after the persistent ability’s duration.

Each ability has a cooldown time, which is the duration a player must wait be-

fore the ability can be used again. For example, the Blink ability has a cooldown

time of 10 seconds, which means once the player uses Blink the player cannot use

Blink again until at least 10 seconds have passed. However, waiting longer than 10

seconds to use Blink does not provide the player with additional uses of Blink or

provide a reduced cooldown time. Player’s must conservatively determine when

to use an ability so that the ability will be available when needed most, while at

the same time utilizing the ability to the fullest potential by using the ability often.

In addition to the cooldown time, player’s must also plan around the prepara-

tion time. Preparation time has the strongest influence on build-order performance.

When player’s select an action, a period of time may need to pass until the action’s

effects actually occur. Players most commonly encounter preparation time prob-

lems from constructing new units. When players choose to construct new units,

the game enforces a delay between when the unit begins construction and when

16

the unit becomes available for use. The delay varies depending on the desired unit,

and players expecting to have different units available at a specific time must plan

around the delays. Each individual building typically produces new units sequen-

tially, but constructing multiple buildings allows players to produce new units in

parallel. Therefore, build-orders are strongly affected by the preparation time of

units. In order to minimize the amount of time to produce an army, a build-order

must schedule unit construction so that building a unit is not delayed by another

unit’s preparation time. If a build-order inefficiently schedules unit construction

by creating many preparation time delays, the player’s army will take longer to

construct. At the same time, players can reduce preparation time conflicts by ded-

icating more resources towards constructing new buildings and fewer resources

towards building units. Build-orders must determine what trade-offs to make be-

tween producing units sooner in the short-term and dedicating resources towards

better production capabilities in the longer-term. There are many different ap-

proaches to finding build-orders that address the challenges in this section. In the

following section, we provide an overview of the methods we use (a genetic al-

gorithm, coevolutionary algorithm, and hill-climber) and methods used by other

researchers.

2.2 Genetic Algorithms

Genetic Algorithms (GAs) were first described by John Holland in 1975 and were

the subject of David Goldberg’s seminal book [34, 28]. GAs find solutions to search

and optimization problems by using the genetic processes of biological organisms

as a model. As such, GAs also adopt terms from biology to help describe similar

concepts. When a GA attempts to solve a problem, the potential solutions (also

17

Figure 2.3: Components of a chromosome.

Figure 2.4: Evaluating a population of chromosomes.

called individuals) found by the GA are represented as chromosomes. Chromosomes

aren’t the actual solution to a problem, they are instructions that dictate how to cre-

ate the solution. Figure 2.3 shows the break-down of an example chromosome C0.

A chromosome contains a sequence of genes, where each gene contains a symbol

from a set of possible symbols called alleles.

GAs operate on a set of chromosomes called a population. Typically, the GA

18

initializes the population with randomly generated chromosomes. As Figure 2.4

shows, each chromosome in the population must be assigned a fitness, a measure

of how well the build-order represented by the chromosome solves the given prob-

lem. The evaluation function or evaluator interprets the build-order from the chro-

mosome and determines the chromosome’s fitness.

Figure 2.5: Roulette Wheel Selection.

Once every chromosome in the population has a fitness, we want the chromo-

somes to learn from each other. Pairs of chromosomes that will learn from each

other are chosen through a selection step. There are different ways of choosing the

pairs of chromosomes, but a commonly used method is Roulette Wheel Selection

(RWS). RWS chooses chromosomes with a probability proportional to the chromo-

some fitnesses, as Figure 2.5 illustrates. Chromosomes with smaller fitnesses have

a smaller chance of being selected, while chromosomes with larger fitnesses are

more likely to be selected. When chromosomes have similar fitnesses, like F1 and

19

Figure 2.6: One-Point Crossover.

Figure 2.7: Bit-Wise Mutation.

F2, on average the chromosomes will be chosen a similar number of times. Fitness

proportional selection helps the GA learn by focusing on the most promising chro-

mosomes. Chromosomes with a higher fitness solve the problem better, therefore

the GA spreads the knowledge represented in higher fitness chromosomes more

often.

Each pair of selected chromosomes are called parents, which share information

between each other to create children chromosomes. Sharing information between

chromosomes is called crossover. Crossover attempts to combine the best traits in

each parent to produce better children. As with selection, there are different meth-

ods that can be used for crossover. Figure 2.6 shows a simple crossover method

known as one-point crossover. One-point crossover selects a random gene index,

splits both parents at the selected index, then crosses the information over between

20

Figure 2.8: Mutation reintroducing genes extinct in all chromosomes.

Figure 2.9: Genetic Algorithm generation cycle.

the two parents at the split-index. Crossover helps the GA explore new chromo-

somes, but may prematurely exclude other viable chromosomes. Mutation is one

possible approach to prevent narrowing the solution space too quickly.

Bit-wise mutation has a small probability of changing the value of each gene

in a chromosome, as shown in Figure 2.7. By changing the value of some genes,

mutation helps the GA explore a broader range of the solution space that may not

be found by crossover. Mutation is also useful for reintroducing genes that have

been lost in the population. In the case shown in Figure 2.8, the two left-most genes

21

contain the same value in all chromosomes in the population. This creates a prob-

lem: no matter which chromosomes are selected for crossover, or what split-index

is used, the two left-most genes will always have the same value in the children.

The search space becomes limited to chromosomes which all contain the same two

left-most genes. As illustrated by the two left-most genes changing color in Fig-

ure 2.8, mutation reintroduces genes into the population that otherwise could not

be explored. The sequential steps of evaluation, selection, crossover, and mutation

creates a new population of chromosomes. The new population replaces the old

population, and evaluation, selection, crossover, and mutation are then sequen-

tially repeated on the new population, as shown in Figure 2.9. Each iteration of

this sequence is referred to as a generation. We therefore label each population the

GA produces by the number of iterations taken to create the population. For ex-

ample, a population created by iterating through the sequence 27 times is referred

to as the 27th generation. The GA continues to iterate through the sequence until

some condition is met, for example: reaching a maximum number of iterations or

finding a chromosome that satisfies a minimum fitness.

While each generation generally leads the GA towards finding chromosomes

with a higher fitness, there is no guarantee that children will have a higher fit-

ness than the parents. Some GA’s use elitist selection strategies that copy the

highest fitness chromosomes from the parent population into the next generation.

If crossover and mutation happen to produce mostly low-fitness children, then

elitism preserves the parents that provide knowledge towards solving the prob-

lem.

Canonical GAs rely on an evaluation function to determine how well an indi-

vidual solves a problem. Typically the evaluation function is static and determinis-

22

tic; at any point in time, given the same chromosome, the evaluation function will

always return the same fitness. This means chromosomes are evaluated in isola-

tion, and the performance of previous chromosomes has no bearing on the current

chromosomes. However, there are problems that exist where determining a chro-

mosome’s fitness requires a comparison to previous chromosomes. Competitive

games, such as Chess, are a straight-forward example of such a problem. Measur-

ing a player’s performance in a game cannot be done by only having one player

explain their decision making process. The success or failure of the player’s deci-

sion making process is entirely dependant on the opponent they play against. In-

stead, measuring performance requires observing the outcome of matches against

different opponents.

2.3 Coevolutionary Algorithms

Coevolutionary Algorithms (CAs) are closely related to GAs, but with a few dif-

ferences in how chromosomes are evaluated[9, 10, 2, 31]. Rather than using only a

static evaluation function to evaluate chromosomes, chromosomes are compared

to each other. In the setting of a competitive game, chromosomes are evaluated

by playing a match against the other chromosomes in the population. The more

opponents a chromosome defeats, the higher the chromosome’s fitness. However,

comparing all members of a population to each other cannot always be done in

a reasonable amount of time. Instead, we evaluate a population against a subset

of the population called a teachset[51]. The teachset contains several chromosomes

that are diverse and different from each other in some way. For example, chro-

mosomes in the teachset may be selected because they each defeat different sets of

opponents, and therefore present different challenges. A diverse teachset allows

23

the CA to keep the number of comparisons to a minimum, while encouraging chro-

mosomes to overcome different challenges and outperform all their predecessors.

Because the teachset contains chromosomes from the population, a CA effectively

bootstraps challenging opponents for chromosomes to compete against. As the

population produces better chromosomes, the teachset will contain more challeng-

ing problems that new chromosomes must overcome. As a result, bootstrapping

opponents creates an arms-race that drives the CA to find chromosomes that per-

form well against different opponents. We describe the specifics of our GA and

CA implementation in Chapter 3, and in the next section we describe a bit-setting

hill-climber.

2.4 Bit-Setting Hill-climber

Figure 2.10: Example of a Bit-Setting Hill-climber.

Bit-Setting Hill-climbers (HCs) perform a local search around a chromosome,

rather than having multiple chromosomes learn from each other [67]. A HC starts

with a random chromosome, and makes changes to individual elements of the

chromosome by flipping a bit, as shown in Figure 2.10. The HC flips one bit in the

chromosome, and re-evaluates the result using an evaluation function. If changing

24

the bit’s value leads to a increased fitness, then the change is kept, but if chang-

ing the value lead to a decreased fitness, the old value is restored. Each iteration

changes the value of the chromosome one bit at a time, and incrementally produces

better chromosomes that are farther away from the initial chromosome. While se-

quentially flipping bits allows the HC to improve upon the initial chromosome,

HC’s tend to get stuck on local optima since they only explore closely related chro-

mosomes. HC’s must run multiple times with different initial chromosomes in an

attempt to find different local or global optima. In contrast, GAs and CAs are capa-

ble of finding chromosomes in a search space with multiple local or global optima.

While our work uses a GA, CA, and HC to search for build-orders in RTS games,

a large body of work exists that investigates different approaches to problems in

games.

2.5 Related Work

Previous work in game AI research traditionally revolved around board games

and card games, using a variety of different approaches. Deep Blue, a Chess playing

AI capable of defeating human chess champions, used minimax search to test all

possible board configurations 6-12 turns (or ply) in advance [17]. By assuming the

opponent would always make an optimal move, Deep Blue could determine which

moves to make that would leave the opponent in a weaker position in 6-12 ply.

Chinook, a Checkers game AI, used a similar approach to search more than 19 ply in

advance, and played competitively against human world champions [55]. Game

AI for the card game Poker (specifically the Texas Hold’em variant) has been de-

veloped using rule-based expert systems, Monte-Carlo search, and Bayesian Net-

works [64, 61, 45]. Othello, Backgammon, and Go have also been used for game

25

AI research [13, 59, 12]. In addition to the approaches listed above, evolutionary

approaches have been employed on these board games as well.

Chellapilla and Fogel created a Checkers game AI named Blondie24 by using co-

evolution to find the weights of an Artificial Neural Network (ANN) [18, 19, 27].

The resulting game AI played competitively against humans on an online Checkers

website The Zone, with the game AI winning most of the games played. The most

challenging opponent the game AI defeated was ranked 98th out of 80, 000 regis-

tered players, and was 24 ELO points away from the Master level [25]. Cowling

et al. coevolved the weights of an ANN to create a challenging game AI for The

Virus Game [23]. The best ANN produced by Cowling’s approach defeated most

opponents, including opponents never encountered during training. Davis and

Kendall used coevolution to tune the parameters of an evaluation function for an

Awari game AI [24]. The coevolved game AI played against the game AI provided

in the commercial game Awale, and beat the commercial game AI on three of the

four difficulty settings. Nitschke coevolved pursuer-players that cooperated with

each other to capture evader-players in a pursuit-evasion game [46]. While in the

past game AI research investigated board games, more recently game AI research

has shifted towards computer games.

A variety of different computer games and approaches have been used in recent

research [33, 32, 53]. Laird et al. developed game AI for the commercial FPS games

Quake II and Descent 3 using their Soar architecture and a knowledge base [62].

Spronck et al. created adaptive game AI for the Computer Role-Playing Game

(CRPG) Neverwinter Nights with dynamic scripting [56]. Loiacono et al. used Q-

learning to create successful overtaking/passing behaviours in the racing simula-

tor TORCS [40]. Additionally, some of these games are so popular for game AI

26

research that researchers have formed annual competitions to compete their state-

of-the-art game AIs against each other [35, 50, 39, 15]. Among all the different types

of computer games, RTS games in particular are interesting research platforms.

Evolutionary approaches are useful for addressing many of the challenges in

RTS games. Ponsen et al. showed that using an evolutionary algorithm to gener-

ate an RTS tactic knowledge-base improved strategies created by dynamic script-

ing [48]. Avery and Louis created RTS team strategies that enabled groups of en-

tities to respond to opponent movements by coevolving influence maps [1]. Miles

and Louis used a case-injected GA to produce strike force strategies in an RTS

game [42]. In Miles’ dissertation, Miles coevolved influence map trees that cre-

ated a challenging RTS game AI [44]. Keaveney and Riordan used their own ab-

stract RTS game to coevolve game AI that coordinated entity movement on mul-

tiple maps [36]. Their research showed that coevolving the game AI on only one

map enabled the game AI to win on testing maps not used during training. How-

ever, game AI which coevolved on multiple maps performed better on the testing

maps. Liu et al. used a case-injected GA to evolve influence maps and potential

fields for micromanagement of entities during combat scenarios in the RTS game

StarCraft: Brood War [38]. In addition to the above problems, researchers have

investigated different RTS micromanagement and macromanagement problems,

including some work into build-orders [66, 29, 58, 22].

While only a small body of work focuses specifically on build-orders in RTS

games, a few different approaches have been investigated. Kovarsky and Buro

discussed the challenges of build-order optimization and modeled build-orders

with Planning Domain Definition Language (PDDL) [37]. Cho et al. analyzed

StarCraft replays to predict opponent strategy and changed their player’s build-

27

order accordingly [20]. Weber and Mateas used case-base reasoning to select build-

orders from a case-base according to the game state [65]. Churchill and Buro used

a depth-first branch and bound algorithm to search for winning build-orders in

real-time [22]. In contrast, our research uses a coevolutionary approach to finding

robust, strong build-orders which learn from and defeat specific opponents. Our

coevolutionary approach does not depend on a specific RTS game, so there are

different RTS research environments we could use. We discuss our approaches

and research environments in the following section.

28

CHAPTER 3

METHODOLOGY

This chapter details the approaches we used in our research. We describe the RTS

environments we used, our representations for build-orders, and the implemen-

tation of our GA, CA, and HC. To begin our research, we first needed an RTS

environment that allowed us to test the performance of build-orders.

3.1 Real-Time Strategy Environments

There are several platforms available for investigating problems in RTS games. The

Brood-War API (BWAPI) allows developers to retrieve information about the game

state and interact with units in StarCraft [16]. Stratagus provides a free, cross-

platform RTS engine that has been used in several research projects [49]. WARGUS

uses Stratagus as the back-end for game play, but uses the entity data from the

commercial game WarCraft II [63]. Likewise, STARGUS uses Stratagus as the back-

end for game play, but uses the entity data from StarCraft [57]. ORTS, another RTS

engine, provides a complete programming environment for game AI research [14].

However, these projects are not designed with a specific problem-solving approach

in mind, and may be difficult to use with our GA, CA, and HC. Instead of using

an existing project, we designed two RTS environments that our GA, CA, and HC

can easily and quickly interact with.

29

Figure 3.1: WaterCraft.

3.1.1 WaterCraft

Our initial research used an RTS game we called WaterCraft, shown in Figure 3.1.

We developed WaterCraft specifically for researching evolutionary algorithms in

RTS games. WaterCraft was programmed primarily with the Python scripting

language, but the game physics were programmed using the C/C++ program-

ming language for the sake of speeding up physics calculations. We implemented

a game AI as a part of WaterCraft that communicated with WaterCraft directly,

rather than through the Graphical User Interface (GUI) like humans must do. As

a result, we did not need to implement our own GUI for the sake of the game AI.

Instead, we used the readily available Python-OGRE graphics engine for the GUI

[60]. We modeled the game play, unit strengths, unit weaknesses, and unit costs

in WaterCraft around StarCraft II, which is known for having balanced unit prop-

erties [11]. While WaterCraft lacks some features provided in commercial games,

we have implemented the core features of an RTS game. First, players can build

several types of buildings and units, with the objective of destroying their oppo-

30

nent’s base. Second, WaterCraft’s GUI resembles and functions similar to GUIs in

other RTS games. Third, human players have the option of playing against the

game AI or another person over the network. While a player competes against an

opponent, the player’s increases their score by accomplishing different objectives.

As such, we can benchmark a player’s progress throughout a game by their score,

and use score to identify winning build-orders.

Players typically determine how well they played overall by looking at their

final score at the end of a game. In the context of our GA, CA, and HC, the final

score acts as a build-order’s fitness. Our fitness calculation in WaterCraft encour-

ages build-orders to destroy enemy units and structures, as shown in Equation 3.1.

Fi j = S Ri + 2
∑

k∈UD j

UCk + 3
∑

k∈BD j

BCk (3.1)

Where Fi j is the fitness of build-order i against build-order j, S Ri is the amount of

resources spent by build-order i, UD j is the set of units owned by build-order j that

were destroyed, UCk is the cost to build unit k, BD j is the set of buildings owned

by build-order j that were destroyed, and BCk is the cost to construct building

k. Using Equation 3.1, the higher a build-order’s fitness, the better the build-order

utilizes resources Our fitness equation enables us to identify winning build-orders,

but we cannot determine a build-order’s fitness with the build-order alone.

For a build-order to receive a fitness, the build-order must compete against an

opponent in an RTS game. However, build-orders only give instructions on which

units to build and when to build the units, not how to use or control the units. In

order to evaluate a build-order in WaterCraft, there needs to be a game AI which

uses a given build-order to compete against an opponent.

WaterCraft receives build-orders as a sequence of build-actions that Water-

31

Craft’s game AI uses to defeat an opponent. The game AI sequentially issues

each build-action in the build-order. Before issuing each build-action, the game

AI automatically issues a build-action for any missing dependencies first, such as

a building required to produce the unit for the given build-action. Automatically

inserting missing dependencies allows us to use a smaller build-order represen-

tation, which we discuss in Section 3.2. Inserting missing dependencies also pre-

vents a build-order from deadlocking on an invalid build-action, but still requires

the GA, CA, and HC to determine the overall sequence of build-actions. The game

AI will attempt to issue build-actions as quickly as possible. When the game AI

fails to execute the current action because of a lack of resources or pending pre-

requisite being built, the game AI waits a short duration and reattempts to execute

the action until the action succeeds. Using the same build-order against different

opponents will yield a different outcome. As a result, a build-order must com-

pete against each opponent in order to obtain a score for each outcome. However,

having a build-order compete against multiple opponents can be time consuming.

Evaluating the performance of a build-order requires simulating an entire game

in WaterCraft against an opponent. Additionally, GAs and CAs need to perform

thousands of evaluations. To minimize the amount of time taken to evaluate a

build-order, we turned off the OGRE graphics engine when a GA, CA or HC used

WaterCraft to evaluate a build-order. By disabling the graphics we greatly reduced

the amount of time required to run a simulation, without changing the outcome.

However, an RTS game has different computationally expensive components, such

as physics, that are unnecessary for evaluating build-orders. Unnecessary compu-

tations increased the amount of time required to evaluate build-orders, but can not

be disabled. In order to further reduce our evaluation time, we created another

RTS environment called Build-Order Simulation Software (BOSS).

32

3.1.2 Build-Order Simulation Software

Figure 3.2: SparCraft.

We created BOSS specifically for investigating build-orders. Rather than sim-

ulate a full RTS game like WaterCraft, BOSS only simulates build-orders. Like

WaterCraft, BOSS receives build-orders as a sequence of build-actions, and needs

a game AI that uses the build-order to play the game. When BOSS receives a

build-order, BOSS’ game AI steps through the sequence of build-actions, and BOSS

reports the time at which each unit becomes available to the player. Available re-

sources are estimated by summing the average resources-per-second of all avail-

able resource gathering units (called Space Construction Vehicles or SCVs) over

time. When calculating available resources, BOSS takes into consideration when

new SCVs are produced and when SCVs become available/unavailable due to con-

structing a new building. While BOSS’ game AI optimally assigns a build-action

to the building that will complete the build-action soonest, the game AI will not

change the sequence of build-actions in the build-order. We determined the fitness

of a build-order by how well the build-order enabled BOSS’ game AI to defeat

an opponent in combat. However, BOSS only simulates when units are produced

from a build-order, and has no combat. To evaluate a build-orders fitness, we

33

needed another program that estimated the outcome of combat.

We pair BOSS with Churchill’s StarCraft combat simulator SparCraft, shown in

Figure 3.2, to test performance of our build-orders against opponents [21]. Like

BOSS, SparCraft was modelled around StarCraft: Brood War and was created to

perform only one RTS task, combat. This allows SparCraft to quickly simulate

the results of combat and speeds up our evaluation time, without interfering with

BOSS. When the game AI declares an intent to attack at a time-frame, BOSS re-

ports all units available for both players at that time-frame and sends the units to

SparCraft. SparCraft simulates the outcome of combat between each game AI’s

group of available units, and scores each game AI based on the number of surviv-

ing units. Build-orders which destroy all of the opponent units while protecting

allied units are considered the highest scoring build-orders, just as a player would

expect in a full RTS game. WaterCraft, BOSS, and SparCraft are all easy to use with

our GA, CA, and HC, but there are some significant differences.

While WaterCraft was modelled around StarCraft II, BOSS and SparCraft were

modelled around StarCraft: Brood War. Being modelled around different games

means that the same build-order will perform differently in WaterCraft than in

BOSS. By limiting BOSS and SparCraft to only build-order simulation and combat

simulation rather than fully simulating an RTS game, we drastically reduced the

run time of our GA, CA, and HC. However, because we ignore or abstract some el-

ements of RTS games, BOSS and SparCraft do not perfectly model StarCraft: Brood

War. Despite being different, we are confident that BOSS paired with SparCraft are

close enough to an RTS game that our results are applicable to other RTS games,

which we show in Chapter 6. To keep our games similar, WaterCraft and BOSS

both use a game scenario containing the same units and starting conditions.

34

3.1.3 Game Scenario

In our first investigation, which we discuss in detail in Chapter 4.1, we want to

exhaustively search the outcome of build-orders in an RTS game. To make exhaus-

tive search feasible, our research works with only four types of units and the five

types of buildings needed for their production, shown in Table 3.1. Marines are

Table 3.1: Available unit types and prerequisites

Unit Type Prerequisites

SCV Command Center

Marine Barracks

Firebat Barracks, Refinery, Academy

Vulture Barracks, Refinery, Factory

quick and cheap to build, with Barracks being the only prerequisite required be-

forehand, but with low offensive capabilities. Firebats are stronger than Marines,

but require a Refinery and Academy in addition to the Barracks, and cost more

to produce. Vultures are the strongest unit and require a Refinery, Factory, and

Barracks to produce, but cost the most and take the longest to build. SCVs are pro-

duced from Command Centers, and are used for gathering resources and build-

ing new structures, but have little offensive or defensive value. When building a

structure, the SCV must move to the build location of the structure, and becomes

unavailable until the structure is complete. When gathering resources, the SCV

must move to the location of the resource, gather a small portion, and deliver the

resource to a Command Center. Once the SCV delivers the resource to the Com-

mand Center, the resource is added to a bank that players use to pay for additional

units and structures. When we initialize a game, each player starts with five SCVs

35

and a Command Center. We place the SCVs and Command Center near sources of

additional resources to decrease the amount of time spent gathering and deliver-

ing resources. In order to measure how well a build-order worked in WaterCraft

and BOSS under this scenario, we tested build-orders against three hand-coded

build-orders.

3.1.4 Baseline Opponents

We created three hand-tuned baseline build-orders that provided opponents for the

GA and HC to train against, and allowed us to test the robustness of build-orders

produced by our GA, CA, and HC. The baselines we created each provided a dif-

ferent challenge for build-orders to overcome. The first baseline (Baseline Small)

attacks quickly with a small force. Baseline Small builds three additional SCVs for

gathering minerals, followed by constructing five Marines, then attacks the player.

This build-order challenges the player by quickly building enough units to attack

before the player builds much. The second baseline (Baseline Large) does the same,

but builds ten Marines instead of five. While much slower than the Baseline Small

build-order, the Baseline Large build-order produces a much harder force to over-

come if left uninterrupted. The third baseline (Baseline Medium) builds two SCVs

for gathering minerals, three SCVs for gathering gas, five Vultures, then attacks.

Baseline Medium also takes a long time to complete, but focuses on building fewer

units that are individually stronger. These three baselines pose diverse problems,

and our GA, CA, and HC must search for build-orders which overcome all three

challenges. In order to allow WaterCraft’s and BOSS’ game AI to easily use these

baseline build-orders to compete in an RTS game, we use the same build-order

representations for our GA, CA, HC and baseline build-orders.

36

3.2 Build-Order Representation

Since GAs and CAs prefer binary representations, we represented build-orders as

a sequence of 0’s and 1’s, a bit-string [28]. A bit-string representation makes our

GA, CA, and HC easier for us to implement. Additionally, our GA, CA, and HC

can operate on any bit-string representation for any problem, without modifying

our GA, CA, and HC. Our research used two bit-string representations for build-

orders: Build-Order Lists (BOL) and Build-Order Iterative Lists (BOIL).

3.2.1 Build-Order List

Table 3.2: BOL action encodings

Bit Sequence Command Prerequisites

000-001 Build SCV (Gather Minerals) None

010 Build Marine Barracks

011-100 Build Firebat Barracks, Refinery, Academy

101 Build Vulture Barracks, Refinery, Factory

110 Build SCV (Gather Gas) Refinery

111 Attack N/A

BOL represents a build-order as a sequence of actions. Every three bits of the

binary string encodes an action, as shown in Table 3.2. Each build-action instructs

the game AI to build the corresponding unit, and any missing prerequisites. The

attack-action instructs the game AI to send all constructed units to move towards

the opponent’s Command Center and attack the enemy units. BOL assumes that

37

the game AI will automatically detect any missing prerequisites and insert them

before any given action, as shown in Figure 3.3. Encoding buildings and units

Figure 3.3: BOL encoding example.

would require a representation with 4-bits per action, unlike encoding only the

units which requires 3-bits per action.

However, there are more combinations of 3-bit sequences available than build-

commands. In order to assure all possible bit strings represent a valid build-orders,

some build-actions are represented by more than one 3-bit sequence. This may bias

our GA, CA, and HC towards preferring actions with multiple encodings, however

the bias should not matter in the long run. Build-orders which perform poorly due

to over represented actions will not survive for long in the GA, CA, and HC. While

BOL enabled us to represent a build-order in our initial research, BOL can only

represent a single, limited length sequence of actions. We later extended our BOL

representation to Build-Order Iterative List (BOIL), which allowed us to represent

a build-order with multiple arbitrary length sequences of actions.

3.2.2 Build-Order Iterative List

BOIL extends the BOL representation by including branches and loop, as shown in

Table 3.3. As with BOL, build-orders are a sequence of actions encoded as a binary

string. However, if a branch (IF) or loop (WHILE) is encoded, then the next three

38

(a) BOIL encoding.

(b) BOIL hierarchy.

Figure 3.4: Two-Condition BOIL encoding example.

encoded actions are treated as if they are in the scope of the branch or loop. For

example, the BOIL shown in Figure 3.4(a) would translate into a list of actions the

hierarchy shown in Figure 3.4(b).

If the condition for a branch is false, then all the actions in the branch’s scope

are skipped. Otherwise, when the condition for a branch is true all the actions in

the branch’s scope are sequentially queued for execution. Once the actions from

the branch’s scope complete, the next action after the branch’s scope is considered.

A loop behaves the same as a branch, with one exception. When the actions from

the loop’s scope are completed, instead of progressing to the next action after the

loop’s scope, the loop condition is checked again and repeats the actions in the loop

until the condition is false. There are two conditions that branches and loops can

test: That the number of completed units is greater than or equal to seven, and that

the number of completed units is less than seven. We chose to limit ourselves to

a scope length of three and completed unit check of seven because these were the

largest valid values we could use while always allowing two branches of execution

in our shortest BOIL representation (5-actions). We compare four BOIL configura-

tions in Chapter 6, using Table 3.3: BOIL with no conditions, loops or branches,

39

Table 3.3: BOIL action encodings

No Conditions One Condition Two Conditions Action Prerequisites

N/A 0000 0000 IF(Condition1) N/A

N/A 0001-0010 0001 WHILE(Condition1) N/A

N/A N/A 0010 IF(Condition2) N/A

N/A N/A 0011-0100 WHILE(Condition2) N/A

0000 0011 0101 Build SCV (Gather Minerals) None

0001-0010 0100 0110 Build SCV (Gather Gas) None

0011-0100 0101-0110 0111 Build Marine Barracks

0101 0111 1000 Build Firebat Barracks, Refinery, Academy

0110-0111 1000 1001 Build Vulture Barracks, Refinery, Factory

1000-1001 1001-1010 1010 Build Barracks None

1010 1011 1011-1100 Build Factory Barracks

1011-1100 1100 1101 Build Refinery None

1101-1110 1101-1110 1110 Build Academy Barracks

1111 1111 1111 Attack N/A

BOIL with only the greater-than condition, BOIL with only the less-than condi-

tion, and BOIL with both conditions. We also remove the automatic dependency

assumption, requiring the GA and CA to determine and encode the prerequisites

as they are needed. Removing automatic dependencies makes finding valid build-

orders more difficult, since there can be many invalid build-orders. For example, a

build-order which attempts to build a Marine before building a Barracks is invalid,

since the Marine cannot be produced without the Barracks. However, explicitly

encoding buildings allows the evolutionary methods to determine when and how

many unit production facilities to build, allowing quicker production of combat

units. This means BOIL must encode build-actions for all possible units and build-

ing, requiring a larger representation. While BOL requires 3-bits per build-action,

40

BOIL requires 4-bits per build-action. This larger representation makes exhaustive

search infeasible, but the addition of branches and loops enabled us to represent

stronger build-orders. In order to find winning build-orders using the BOL and

BOIL representation, we investigate three approaches: a GA, a CA, and a HC. The

next section describes the implementation of our GA.

3.3 Genetic Algorithm

Figure 3.5: Uniform Crossover.

As we described in Chapter 2.2, a GA tests build-orders in an RTS game, and

shares information between build-orders that show promise. GAs accomplish this

by repeating four main steps: selection, crossover, mutation, and elitist selection.

Our GA uses roulette wheel selection, so the probability of a chromosome being

selected for crossover is proportional to the chromosome’s fitness. RWS enables

our GA to focus on spreading the information contained in the most promising

chromosomes. Once pairs of parent chromosomes have been selected by RWS,

the selected parents exchange information with each other through crossover. Our

GA uses uniform crossover to produce new children chromosomes from the parent

chromosomes. For each gene in a child chromosome, uniform crossover takes the

index of the child chromosome’s gene, randomly selects one of the two parents,

and copies the parent’s gene at the same index to the child, as shown in Figure 3.5.

41

Uniform crossover has a 95% chance of occurring on each selected pairs of parent

chromosomes. If crossover does not occur on a pair of chromosomes, the parents

are copied to the child population instead. Uniform crossover enables our GA to

search for children chromosomes which incorporate the features that make each

parent work well. Once crossover has produced a child population, we mutate

some genes with a low probability. We use bit-wise mutation on all the chromo-

somes in the child population. For each bit in every chromosome, bit-wise mu-

tation has a .1% probability that the bit will change value. In order to prevent

information relevant to winning from being lost due to many unfit children be-

ing produced, we use an elitist selection strategy called CHC selection which eval-

uates the child population [26]. Once all the children have been evaluated, the

CHC selection merges the parent and child populations, sorts the chromosomes

from highest fitness to lowest fitness, and discards the bottom 50%. This enables

CHC selection to determine how many parents should be preserved. If many child

chromosomes are less fit than the parent chromosomes, then many parent chro-

mosomes are copied into the next generation. But if many child chromosomes are

more fit than the parent chromosomes, then only a few parent chromosomes are

copied into the next generation. In order to find robust build-orders, our GA uses

three methods to compute chromosome fitnesses: a teachset, shared fitness, and

scaled fitness.

3.3.1 Teachset

In order to evaluate the fitness of build-orders, the GA must test the build-orders

against multiple opponents. The GA teachset is our hand-tuned baseline build-

orders described in Section 3.1.4. Chromosomes in a population compete against

42

the members of the teachset, and receive a fitness against each opponent. While fit-

ness measures the performance of a chromosome against an individual opponent,

for the purposes of selection and crossover we are interested in the performance of

a chromosome against all opponents. Additionally, we want to encourage chromo-

somes to win against many opponents, as well as winning against opponents that

other chromosomes cannot defeat. To find chromosomes that meet these goals, we

compute a shared fitness for every chromosome in a population.

3.3.2 Shared Fitness

Shared fitness rewards chromosomes that contribute new information, in addition

to the number of opponents defeated [51]. Usually, only chromosomes that defeat

many opponents have a high fitness. However, shared fitness rewards chromo-

somes for defeating teachset members few other chromosomes defeat. Chromo-

somes that defeat teachset members few others can, contain new and important in-

novations for winning. Giving these unique chromosomes a higher fitness allows

the GA’s population to contain different niches of chromosomes, which address

the different challenges presented in the teachset. We calculated fitness sharing as

shown in Equation 3.2. Where f shared
i is the shared fitness of chromosome i, Di is

the set of teachset members chromosome i defeated, j a teachset member in Di,

L j is the number of times j lost against all chromosomes, and Fi j is the fitness of

chromosome i against teachset member j.

f shared
i =

∑
j∈Di

1
L j

Fi j (3.2)

L j is the total number of build-orders that baseline j lost to in the current popula-

tion. We calculate L j using Equation 3.3, where P is the set of all chromosomes in

43

a population, and i is an element of P.

L j =
∑
i∈P

GameResult(j, i) (3.3)

GameResult(j, i) =

0, F ji >= Fi j

1, F ji < Fi j

 (3.4)

GameResult is a function that returns 1 if baseline j lost against build-order i, and

returns 0 if baseline j won against build-order i, as show by Equation 3.4. Since

Equation 3.2 only takes the sum of baselines that were defeated jl can never be 0,

since if a baseline j was never defeated j would not be in set Di. This fitness shar-

ing formula rewards build-orders which defeat many opponents, as well as chro-

mosomes that contribute important new information for winning against previ-

ously undefeated opponents. We also multiply the shared fitness by the fitness the

chromosome received against each defeated opponent. This allows us to identify

chromosomes that not only win, but perform significantly better against the oppo-

nent. While shared fitness identifies which chromosomes are the most promising,

we also want Roulette Wheel Selection to select diverse pairs of chromosomes for

crossover. We use fitness scaling in order to enable more diverse selections while

still giving preference to the higher-fitness chromosomes.

3.3.3 Fitness Scaling

Fitness scaling adjusts the shared fitness of all chromosomes in a population. In

some cases, a population may contain a chromosome with a fitness that dwarfs

all other chromosome fitnesses. Large outlier fitnesses will be over-exploited by

RWS, and limits the GA’s exploration of the search space. Conversely, if all chro-

mosomes in a population have similar fitnesses with only minor differences, RWS

44

will select chromosomes at random, rather than focusing on the more promising

solutions. Fitness scaling helps alleviate both these problems by evening out the

selection pressure, as shown in Figure 3.6. Selection pressure is evened out by scal-

Figure 3.6: Fitness Scaling on two population fitness distributions.

ing the fitness of all chromosomes in a population, such that the highest-fitness

chromosome maintains a relation relative to the average fitness of the population.

For example, our GA and CA uses a fitness scaling constant of 1.5, meaning that

chromosome fitnesses are evenly adjusted so that the highest fitness chromosome

will be selected 1.5 times on average. This prevents a chromosome with an excep-

tionally high fitness from over influencing selection, while at the same time biasing

selection towards the highest fitness chromosome if the entire population has simi-

lar fitnesses. These methods enabled our GA to find build-orders that defeated our

baselines. However, in order for the GA to search for build-orders, the baselines

must be provided for the GA to train against. Additionally, we also wanted to find

45

build-orders which are robust against many opponents, and not just the baselines.

To search for robust build-orders, we investigated a coevolutionary approach.

3.4 Coevolutionary Algorithm

A CA is closely related to a GA, as we described in Chapter 2.3. In order for a

GA to work, we must provide hand-coded opponents for the GA to test build-

orders against. However, a CA creates its own opponents, and enables us to find

winning build-orders without providing hand-coded opponents beforehand. This

enables the CA to test build-orders against a wider variety of opponents, and pro-

duce more robust build-orders. Our CA uses all the same methods and parameters

as our GA, but changes the opponents contained in the teachset. Rather than al-

ways containing the same three baseline build-orders, our CA’s teachset contains

eight build-orders from previous generations, and changes every generation. We

limited our teachset eight chromosomes, as eight evaluations for every chromo-

some in a population was typically the highest number of evaluations we could

do in a reasonable amount of time. Chromosomes in the CA’s teachset change ev-

ery generation, and are selected from two sources: four chromosomes from shared

sampling and four chromosomes from the Hall-of-Fame (HoF).

46

3.4.1 Shared Sampling

Algorithm 1: Shared Sampling

unsampled = current population

sampled = empty list

while size(sampled) ¡ samples wanted do

for all s ∈ unsampled do

calculate si

end for

best = s ∈ unsampled with highest si

unsampled.remove(best)

sampled.append(best)

for all j ∈ best.de f eated do

jb+ = 1

end for

end while

si =
∑
j∈Di

1
1 + jb

F ji (3.5)

Shared sampling is a method that selects opponents that offer diverse challenges.

To enable chromosomes in a population to improve over previous generations,

normally the chromosomes would have to compete against all their predecessors.

In most cases, evaluating a population of build-orders against all build-orders the

previous generation requires too much time. In order to reduce the number evalu-

ations required, shared sampling selects a diverse set of chromosomes which rep-

resent the different challenges presented by the previous generation. Shared sam-

47

pling works by increasing a chromosomes sample fitness for each teachset mem-

ber the chromosome defeats and adding the chromosome with the highest sam-

ple fitness to the next population’s teachset. However, shared sampling increases

a chromosome’s shared fitness by a smaller amount for defeating teachset mem-

bers already defeated by chromosomes previously selected by shared sampling, as

shown in Algorithm 1. This encourages the teachset to contain build-orders which

defeat different sets of opponents, and offer a variety of different challenges. The

sampling fitness is given by Equation 3.5 where si is the sample fitness, Di is the set

of teachset members chromosome i defeated, jb is the number of time j has been

defeated by chromosomes selected by shared sampling, and F ji is the fitness of

teachset member j against chromosome i. Sample fitness is recalculated each time

a chromosome is sampled, so that chromosomes that defeat teachset members not

defeated by the currently sampled chromosomes are given higher preference. This

allows us to maintain a diverse teachset, while keeping the number of opponents

needed to a minimum. However, shared sampling only selects opponents from

the previous generation, and there may be chromosomes from more distance gen-

erations that would also pose a challenge. Our CA maintains a HoF in order to

preserve older chromosomes which may not longer exist in the previous popula-

tion.

3.4.2 Hall-of-Fame

The HoF is a list of chromosomes that performed well in previous generations.

At the end of each generation, the chromosome with the highest shared fitness

joins the HoF. Build-orders that are successful in early generations, may fail in

later generations and be forgotten by the CA. Because of the intransitive relation-

48

ships between build-orders, the forgotten build-orders may be successful again in

future generations. Preserving build-orders in a HoF prevents new build-orders

from forgetting how to defeat build-orders from previous generations. After each

generation, our CA selects four chromosomes from the HoF and adds the chromo-

somes to the teachset. Our CA selects the chromosomes from the HoF at random,

as Rosin and Belew found that updating the fitness of chromosomes in the HoF and

selecting the highest fitness chromosomes did not provide a great enough benefit

to justify the extra computational expense [51].

Creating the teachset from shared sampling and HoF enables the CA to boot-

strap challenging opponents and find robust build-orders. However, build-orders

found by the CA are not guaranteed to defeat specific build-orders we are inter-

ested in, such as build-orders used by a human player. In order to defeat a specific

opponent, the CA would need to learn from the experience of other build-orders,

or learn from the specific opponent directly. At the same time, we want the CA to

continue to produce robust build-orders. One approach that enables a CA to learn

from the experience of other build-orders is case-injection.

3.4.3 Case-Injection

In the past, case-injection has enabled GAs to learn from previous solutions [41,

42]. Case-injection enables a GA to learn from the experience of other solutions,

and incorporate that knowledge to create better solutions. The solutions (or cases)

are created from a source external from the GA, such as hand-coded solutions or

solutions generated from other search methods. By introducing (or injecting) these

cases into a GA, the GA quickly learns new solutions that work well. In the con-

49

text of our research, case-injection takes build-orders produced from outside the

CA and injecting the outside build-orders into the CA. Cases can be injected into

either the CA’s population or teachset. Injecting into the teachset encourages the

CA build-orders to defeated the injected cases, while injection into the population

encourages the CA build-orders to play like the injected cases. We use four dif-

ferent case injection methods with our CA: case injection into only teachset, case

injection into only the population, case injection into both the teachset and popu-

lation, and no case injection. Our no case-injected method enables us to compare

the influence of the other case injection methods on the coevolutionary popula-

tion. Cases that are injected into a CA are stored in a training case-base, and the

same training case-base acts as the source of the injected cases for all case injec-

tion methods. The training case-base contains five build-orders from our previous

work that were either hand-tuned or evolved. Some of the selected build-orders

were robust and defeated many possible opponents, while the other selected build-

orders were specialized and defeated only a few of the robust build-orders we had

previously evolved. We also maintain 5 different testing build-orders from pre-

vious works. We test chromosomes in every population against all chromosomes

the testing cases in order to measure the influence of case-injection on the popu-

lation. Note that the testing cases are separate from the training case-base, and

are never seen during training for any of our methods. In our initial research, we

investigated the effects of teachset injection on a CA.

Teachset case-injection randomly selects two cases from the training case-base

every generation and injects them into the teachset. The two injected cases replace

the last chromosome selected from shared selection and one randomly selected

HoF chromosome, keeping the teachset size to eight. This influences the CA to pre-

fer build-orders that defeat the injected cases, while the remainder of the teachset

50

keeps the build-orders robust and prevents them from overspecializing for defeat-

ing the injected cases. In addition to learning to defeat specific build-orders, we

also want to use the case-base to teach build-orders to play like injected cases. To

this end, we also investigated the effects of case-injection into the CA’s population.

Population case injection randomly selects two cases from the case-base every

five generations, which replace the two lowest shared fitness chromosomes in the

population. This influences the population to play like the injected cases, while

the teachset continues to encourage the build-orders to remain robust. We limit

ourselves to injecting only two cases to prevent the CA from being overly biased

towards the injected cases, and narrowing the search space explored by the CA too

quickly. Opponents in the teachset change as coevolution finds new build-orders,

which means the effectiveness of an injected solution changes depending on when

we inject the case. We do periodic case injection every five generations to allow

the injected cases a chance to demonstrate their effectiveness against different so-

lutions in the teachset. In addition to investigating the effects of case-injection into

the teachset and population separately, we also investigate case-injection into the

teachset and population simultaneously.

When we inject cases into both the population and teachset, we use both of the

above methods without any modifications, since they do not interfere with each

other. We selected the frequency and number of injections based on what worked

experimentally well, but future work may look at finding optimal values. Our later

work focus’ on our GA and CA, which share information between build-orders, at

the cost of evaluating multiple build-orders. In order to achieve quicker results,

our preliminary work also investigates a hill-climber, a local-search method that

requires fewer evaluations than a GA or CA to produce winning build-orders.

51

3.5 Hill-climber

Algorithm 2: Bit Setting Optimization Hill-climber

chromosome = initialize()

select first bit

evaluate(chromosome)

while not end of chromosome do

flip current bit

evaluate(chromosome)

if fitness decreased then

flip current bit back

end if

select next bit

end while

We use the bit-setting optimization HC shown in Algorithm 2, which attempts

to find an effective solution by sequentially flipping each bit and keeping the

value with the highest fitness. We determine the fitness by playing a chromosome

against all three baselines and taking the sum of the differences in scores, as shown

in Equation 3.6.

fi =
∑
j∈B

Fi j − F ji (3.6)

Where fi is the fitness of chromosome i, j is a baseline in the set of all baselines

B, Fi j is the fitness chromosome i received against baseline j, and F ji is the fit-

ness baseline j received against chromosome i. This allows the hill-climber to per-

form a local search by testing the build-orders most closely related to the initial

build-order, and incrementally increasing the distance from the initial build-order

52

towards build-orders with a higher fitness.

HC performance depends on the initial seed, so we initialize this HC with

thirty-two different seeds: a chromosome set to all 0’s, a chromosome set to all

1’s, and thirty randomly generated chromosomes. Our GA, CA, and HC are able

to find winning build-orders. However, without an absolution measure of quality,

we cannot tell how well the build-orders found by our GA, CA, and HC performed

compared to each other or other possible build-orders which were not found. In

order to address this limitation, we investigated performing the largest exhaustive

search we possible could.

3.6 Exhaustive Search

Exhaustive search evaluates all 2N possible build-orders against all three of our

baselines, where N is the bit string length of the chromosome. For our research, we

limit N to the number of bits required to encode 5 build actions(15-bits for BOL and

20-bits for BOIL), because we could not exhaustively search beyond 5 actions in a

reasonable amount of time. Exhaustive search enables us to rank all possible N-bit

build-orders, and compare the effectiveness of build-orders against the baselines

found by our GA, CA, and HC. The next chapter discusses our results comparing

build-orders from our GA, CA, HC, and exhaustive search.

53

CHAPTER 4

PHASE ONE: BUILD-ORDER ROBUSTNESS

The first goal of our research is finding robust build-orders, which enable a game

AI to defeat multiple opponents. Robust build-orders are desirable because the

game AI will encounter different opponents that must be defeated, and robustness

helps the game AI win under uncertain conditions. We use a GA, CA, and HC

to generate build-orders, however, in order to compare the build-orders found by

the GA, CA, and HC we need an absolute measure of quality, such as exhaustive

search. Exhaustively searching the outcome of all possible build-orders compet-

ing against each other would be infeasible. In order to make exhaustive search

possible, we limit ourselves to exhaustively searching the outcome of all 5-action

build-orders against our three hand-tuned baselines. Additionally, we use our

BOL representation, which enables us to compactly represent build-orders, since

BOL does not require explicitly encoded prerequisites. The next section describe

our results for exhaustively searching 5-action BOLs, and comparing BOLs gener-

ated by our GA, CA, and HC.

4.1 5-action BOL

Our first step was to exhaustively search the outcome of all 215 (32, 768) 5-action

(15-bit) BOLs against our three hand-tuned baselines. Exhaustive search shows

that 80% of the available BOLs end up losing to all three baselines, as shown in Fig-

ure 4.1. This may not be very surprising since the baselines have the advantage of

performing more than the five actions encodable in our chromosome representa-

tion. Despite this advantage, 19.9% of BOLs find and exploit a weakness in at least

54

Figure 4.1: Win frequency of all 5-action BOLs against three baselines.

Figure 4.2: Number of losses for each baseline against all 5-action BOLs.

55

one of the baselines. Only .1% of BOLs manage to beat two baselines, but there are

none that beat all three. Breaking down these results further, we can see from Fig-

ure 4.2 the difference in difficulty that each baseline provides against all possible

build-orders. Baseline Small provides the easiest build-order to overcome, Base-

line Large is harder, and Baseline Medium rarely loses. The average scores also

reflect these difficulties, as shown by Figure 4.3. Most of the baseline losses can be

Figure 4.3: Avg. score of all 5-action BOLs against three baselines.

attributed to BOLs that are tuned solely for beating individual baselines. Though

rare, exhaustive search clearly shows that there exist BOLs within our search space

that can beat two opponents. However, there are no 5-action BOLs that beat all

three baselines. As we can see from these exhaustive results, this problem pro-

vides a search space where BOLs that beat multiple baselines are few and may be

difficult to find. In order to search for some of these winning build-orders, we first

investigated using a HC to quickly produce BOLs.

56

Our HC ran thirty two-times with different starting BOLs (or seeds), and only

two seeds lead to an optimal BOL that could beat both Baseline Large and Baseline

Medium. Fifteen more seeds were able to lead the HC to find BOLs within the top

20 BOLs for defeating only Baseline Small. The remaining 17 seeds lead to BOLs

that lost against all baselines. However, the overall average score of all thirty-two

HC BOLs against the three baselines was still better than exhaustive search, as

shown in Figure 4.4. While the HC was able to quickly produce winning build-

Figure 4.4: Avg. score of 5-action BOLs generated by each approach.

orders, the HC does not reliably find the optimal build-orders. Our next step was

to investigate if a GA could produce winning building-orders more reliably than

the HC.

The GA used a population size of 50 and iterated for a maximum of 100 gen-

erations. We ran the GA a total of ten times, with each new run starting with a

57

random population of chromosomes. Our results showed that the GA’s popula-

tion contained at least one of the best BOLs as early as generation 20. By playing

against all three baselines, the GA’s final population always contained the same

three optimal BOLs. Two of the BOLs defeat a pair of baselines; Baselines Small

and Large, and Baselines Large and Medium. The third BOL found was the opti-

mal BOL for defeating only Baseline Large. Because of our fitness sharing, the best

chromosome of each generation would cycle between three BOLs. As BOLs that

could defeat Baseline Small and Baseline Medium start to take over the population,

BOLs that can defeat Baseline Large start to die out but are given more shared fit-

ness weight. Eventually the shared fitness crosses a threshold where BOLs that

only defeat Baseline Large are given so much weight they briefly have the highest

shared fitness. As BOLs that defeat Baseline Large start to make a comeback in the

population, the weight given to those BOLs becomes lower. Eventually the chro-

mosomes with the highest shared fitness becomes BOLs that can defeat Baseline

Small and Baseline Large (although the BOL scores less against Baseline Large than

a BOL that defeats only Baseline Large). Then as these BOLs start to take over the

population, the cycle restarts. By generation 100, the population consists entirely

of these three BOLs. These results indicate that our GA reliably finds high-quality

BOLs to defeat the baselines. However, in order to find high-quality BOLs, we had

to hand-code the baselines and let the GA use the build-orders during training.

In order to produce high-quality BOLs without the use of hand-coded opponents,

we must investigate a new approach. As such, we expanded our investigation to

include a CA.

We ran coevolution with a population size of 50 for 100 generations, in order

to match the population size and number of generations performed by our GA.

Because coevolution does not train against specific opponents, we measured the

58

Figure 4.5: Avg. score of CA population against different opponents.

Figure 4.6: Avg. win rate of CA population against different opponents.

59

progress coevolution makes by playing all members of the population at each gen-

eration against three sets of opponents: the three best BOLs produced by the GA,

the 32 BOLs produced by the HC, and the same three hand-coded baselines used

to evaluate the GA and HC BOLs.

Figure 4.5 shows that coevolution very quickly moves to increase the average

score of the population, but not by very much. However, this slight increase in

average score has a huge affect on the number of wins the BOLs achieve, as shown

by Figure 4.6. During the first ten generations, the increase in score leads to an

increased number of wins against the GA and HC, but a decreased number of

wins against the baselines. In later generations, an increase in score correlates to

an increase in wins for the GA and baselines, but a decrease in wins for the HC.

While Figure 4.5 and Figure 4.6 shows that our coevolved BOLs are not as good

against the baselines as the GA or HC results, both figures seem to indicate that an

increase/decrease in performance against the GA and HC BOLs correlates to an

increase/decrease in performance against the baselines. Finally, Figure 4.4 shows

how well on average the CA, GA, HC, and exhaustive search performed against

the all three baselines. While the CA was usually able to do better than the average

of exhaustive search against the baselines, the CA does not perform as well as the

GA or HC BOLs, which were tuned using the baselines.

Analysis of the populations at generations with high average scores showed

that the favored BOL was to build mostly Vultures followed by a one or two Fire-

bats. One of the BOLs found by the GA was the opposite of this, preferring to

build mostly Firebats followed by the Vultures. These two BOLs cost the same

to construct, however the BOL found by coevolution provides a stronger defense

in exchange for taking longer to complete. Populations at generations with low

60

average scores had similar BOLs, but issued an attack command as the final ac-

tion. Attacking with multiple Vultures and Firebats can inflict heavy losses, before

the attacking units are destroyed by the defending units. However, against oppo-

nents that are faster to attack or build up an equally strong defense, such as with

our baselines, GA produced BOLs and HC produced BOLs, the attacking force is

wiped out to quickly to benefit.

4.1.1 Conclusion

This section compared a hillclimber, genetic algorithm, coevolutionary algorithm,

and exhaustive search for generating build-orders to defeat opponents in real-time

strategy games. We used three different hand-coded build-orders as baselines

upon which to make our comparisons. In order to make exhaustive search pos-

sible, we restricted our search space to 5-action BOLs. Once we performed exhaus-

tive search, we generated build-orders using a GA, CA, and HC.

Our results show that the HC quickly generates BOLs that defeat our baseline

opponents, but does not find the best BOLs reliably. The HC finds the best BOLs

only about 6% of the time starting with different random seeds. The GA, on the

other hand, reliably (100% of the time) finds the best possible BOLs, but takes

longer than the HC to find them. Coevolution finds BOLs that defeat or tie against

the GA and HC BOLs approximately 80% of the time, showing that the coevolved

BOLs defeat BOLs previously shown to be capable of defeating our challenging

baselines. When compared directly against those same baselines, our coevolved

BOLs increased their performance over time, and defeated or tied the baselines

20% of the time without being trained against the baselines beforehand. Clearly,

61

this shows our game exhibits the rock-paper-scissors balance. While our results

show coevolved 5-action BOLs can beat other challenging 5-action opponents, we

do not yet know how well these BOLs would rank in an exhaustive list of all 215

BOLs played against all 215 BOLs.

These results help specify trade-offs to be made when choosing between GAs,

CAs, and HCs in the kind of problem spaces found in RTS games. The results also

agree well with our understanding of GA, CA, and hill-climbing theory. Our re-

sults indicate that if you are interested in a quick satisfying solution but not overly

worried about optimality, a HC will probably work best. On the other hand, if

you are interested in high quality build-orders you should probably use a GA. Us-

ing a GA against a set of hand-tuned opponents produces BOLs that defeat those

opponents. Lastly, if you do not want to hand-code training opponents, a CA

can bootstrap opponents and generate robust build-orders. While CA produced

BOLs that were robust against other 5-action BOLs, the CA BOLs were not robust

against our hand-coded baselines. However, all three baselines used more than

five actions, and had a large advantage against the 5-action BOLs. The quality of

BOLs found by our GA and CA would be different if the BOLs were more evenly

matched against the baselines. As such, our next approach experiment extended

the length of the BOLs generated by the GA and CA to 13-actions (39-bits), the

length of our longest baseline.

4.2 13-action BOL

We extended our chromosome bit-length from 15-bits (5-actions) to 39-bits (13-

actions) and ran our GA and CA eight times with a population size of 50 for 50

62

generations. Because 13-actions is to large to exhaustively search, we measure our

progress by taking our best BOL produced by the GA, our best three CA BOLs, our

best three BOLs in the CA teachset, our three baselines, ten randomly generated

BOLs and having them all compete against each other. BOLs were selected from

the CA based on how many different opponents the BOLs could beat in the final

generation. The GA converged to single BOL which could defeat all three base-

lines. The BOL found by the GA built two SCVs, several Firebats, another SCV,

several more Firebats, two Vultures then attacked. This BOL defeats all three base-

lines by destroying the opponent’s Command Center. Interestingly the BOL plans

to build the third SCV seconds after losing SCVs in an attack from Baseline Large.

The CA found three BOLs that were particularly effective. One BOL found by the

CA built two SCVs, followed by mostly Vultures and a few Firebats, then attacked.

This BOL provides a strong defense against weaker opponents, while building up

a large army for a powerful attack. A different BOL found by the CA used two at-

tack actions, one attack after the first five units were built and a second attack after

the next five units were built. This BOL disrupts an opponent that plans to build a

more powerful army, and allows the second attack force to destroy the Command

Center. The final BOL focused on only defense by building Firebats and one Vul-

ture as the final action, with no additional SCVs. This BOL maximizes the score

based only on resources spent, so that it can outscore other defensive opponents

that never attack. This BOL also defends against very strong and slow opponents,

but leaves itself vulnerable to opponents that attack early. We ran our CA eight

times, and each time similar BOLs would start to appear between generation 25

and generation 40.

63

Figure 4.7: Avg. score of 13-action BOLs against three baselines.

Figure 4.7 shows us the average score the BOLs from our GA, CA, and ran-

dom creation achieved against our three baselines. We can see that the average

score for the random BOLs is only 1000 and is clearly the lowest average among

all the BOLs. Not surprisingly, the best GA BOL performs better against the base-

lines than any other approach. The best GA BOL performs much better against

the baselines since the GA used only the baselines to train, producing a BOL op-

timized for defeating the baselines. However, this means the best GA BOL over

specialized, and does not perform as well against BOLs produced by the other ap-

proaches. Table 4.1 breaks down the results to show the average score of BOLs

from each approach got when they competed against each other, and highlights

the highest score against approach. From Table 4.1 we can see that although the

best GA BOL gets the highest score against the baselines, the best CA BOLs have

64

Figure 4.8: Avg. score of 13-action BOLs against each other.

Table 4.1: Avg. score of 13-action BOLs against opponents.

PPPPPPPPPPPP
Player

Opponent
Baselines Best GA Best CA Best Teachset Random

Baselines 1733.33 2341.66 1975.0 1775.0 2935.0

Best GA 4591.66 2875.0 2175.0 2833.33 3573.33

Best CA 2600.0 3925.0 2830.55 3322.22 3775.0

Best Teachset 2611.11 3533.33 2355.55 2877.77 3379.99

Random 1124.16 2017.5 1456.66 1498.33 1851.0

65

Figure 4.9: Avg. number of wins of 13-actions BOLs against each other.

Table 4.2: Avg. wins of 13-action BOLs against opponents.

PPPPPPPPPPPP
Player

Opponent
Baselines Best GA Best CA Best Teachset Random

Baselines 1.0 0.33 1.33 1.0 9.0

Best GA 3.0 1.0 0.0 1.0 8.0

Best CA 2.0 1.0 1.33 2.0 10.0

Best Teachset 2.0 0.66 1.0 1.33 10.0

Random 0.30 0.4 0.0 0.0 4.5

66

a higher average score against BOLs from every other approach. As expected, we

also see that the random BOLs average score is the lowest against all the BOLs. Al-

though the best CA BOLs perform better overall, the extremely large score of the

best GA BOL against the baselines skews the total average as seen in Figure 4.8,

which shows the average score of the BOLs from each approach against each other.

If we account for this outlier, the results are more in-line with what we would ex-

pect, with the best CA BOLs having the highest average, followed by the best GA

BOL and the baselines.

Setting aside how well these BOLs can outscore their opponents, we can clearly

see that the best CA BOLs defeat more opponents on average in Figure 4.9, which

shows the average number of wins the BOLs from each approach got against each

other. At first it may seem that the random BOLs do fairly well, but by breaking

these results down into Table 4.2, we get a different picture. From this table we

see that the majority of the random BOL wins are against other random BOLs,

only a couple of random BOLs win against one of the baselines or the best GA

BOL. As expected, the best GA BOL wins against the baselines more than BOLs

from any other approach, in fact the best GA BOL always beats all three baselines.

However, the CA BOLs get the highest average number of wins against BOLs from

every other approach, and still manages to beat two baselines on average despite

never training against any of the baselines.

While simply outscoring your opponent still counts as winning, we want to

find BOLs capable of destroying an opponent’s Command Center whenever pos-

sible. Figure 4.10 shows us on average how many Command Centers the BOLs

from each approach destroy when competing against each other. We can clearly

see that the random BOLs can not destroy any Command Centers, while the BOLs

67

Figure 4.10: Avg. number of Command Centers destroyed by 13-action
BOLs against each other.

Table 4.3: Avg. Command Center kills of 13-action BOLs against oppo-
nents.

PPPPPPPPPPPP
Player

Opponent
Baselines Best GA Best CA Best Teachset Random

Baselines 0.66 0.33 1.33 1.0 8.66

Best GA 3.0 0.0 0.0 1.0 6.0

Best CA 1.33 0.66 0.33 1.33 6.66

Best Teachset 1.33 0.33 0.0 0.33 6.0

Random 0.0 0.0 0.0 0.0 0.0

68

from other approaches are very similar to each other. In addition to being unable

to destroy the opponent’s Command Center, the random BOLs nearly all lose by

having their Command Center destroyed, as shown in Table 4.3, These results

show that winning BOLs are not trivial to find, and simply defending your own

Command Center proves difficult. We can also see from Table 4.3 that, once again,

the best GA BOL manages to destroy the Command Center of all three baselines.

Table 4.3 and Figure 4.10 seem to indicate that on average the three baselines

destroy more Command Centers than the CA BOLs. However, bear in mind that

while all three baselines eventually attack, one of the three CA BOLs never attacks

and therefore can never destroy a Command Center. So despite being having only

two attacking BOLs, on average the best CA BOLs destroys more Command Cen-

ters than the three attacking baselines against three of the approaches, and only

does slightly worse than the baselines against random BOLs. This shows that our

best CA attacking BOLs are very effective at winning.

Finally, I took on the role of the human player and competed against our three

baselines, GA BOL and three best CA BOLs. I am an experienced RTS game player

who has played several different RTS games. I have has shown myself capable of

defeating the hardest AI settings and other moderately experienced human players

in these RTS games, such as Gold and Platinum ranked players in StarCraft II.

Initially, I was restricted to only taking the same actions the game AI was capable

of and limiting myself to taking 13 actions, the same number of actions encoded by

our BOLs. Under these restrictions, I found that the best CA BOLs were the hardest

to overcome, never winning a game against the CA BOLs. We then removed the

restriction on the number of actions, and allowed myself to take as many actions

as I wanted. Eventually I learned several build-orders to defeat the CA BOLs, but

took at least 25 actions to win against the CA BOL’s 13 actions. We then removed

69

the other restriction, and I made moves the game AI was incapable of. This allowed

the me to use strategies not seen by the opponent BOLs, and made winning much

easier. For example, our baselines, GA BOL and CA BOLs never send the SCVs

to attack their opponent’s Command Center, so the BOLs found by the CA and

GA never prepare for this contingency. If I sent my SCVs along with the rest of

my attack force to damage the opponent’s Command Center, the opponent could

easily be defeated. Even when using unrestricted strategies, I noted that the best

CA BOLs still took the longest to defeat.

4.2.1 Conclusions

This section evaluates the performance of real-time strategy game BOLs produced

by coevolution and compares them to the performance of three hand-coded base-

lines and the BOLs found by a genetic algorithm. We also had a human player (me)

play against these BOLs to gauge their difficulty. In the previous section, we lim-

ited ourselves to 15-bit BOLs, in order to make exhaustive search possible. How-

ever, 5-action BOLs are at a large disadvantage against the larger baselines. To even

the playing field for the GA and CA generated BOLs, we increased the bit length to

39-bits (13-actions) and tested how BOLs produced by genetic algorithms and co-

evolution do against the baselines and each other. Our results show that while the

best BOL produced by the genetic algorithm scores the highest against the three

baselines, the best BOLs produced by coevolution could defeat two of the base-

lines and the genetic algorithm’s BOL. That is, coevolution produced more robust

BOLs. The coevolutionary results were more robust as they maintained a higher

average score and destroyed their opponent’s Command Center more often than

the genetic algorithm BOL. A human player that fought against these BOLs found

70

that the coevolutionary results were the most difficult to overcome. However, by

using a strategy not encodable in our representation, the human player could, as

expected, easily beat the best coevolutionary BOLs.

These results indicate that while genetic algorithms perform better against spe-

cific opponents, coevolution produces more robust BOLs. However, BOLs gen-

erated by coevolution are not guaranteed to defeat specific build-orders we are

interested in. Additionally, we were later able to create new build-orders to defeat

the CA BOLs. In order for our CA to adapt to specific opponents, we require an-

other approach that enables a CA to learn from specific opponents. To address this

problem, we investigated case-injection into coevolution.

71

CHAPTER 5

PHASE TWO: CASE-INJECTION

In Chapter 4, we showed that a CA produces robust BOLs, but may not defeat

specific opponents we are interested in. In order to enable our CA to learn from

specific opponents, this chapter investigates case-injection. There are two ways we

can introduce specific build-orders into a CA: case-injection into the CA’s teach-

set, or case-injection into the CA’s population. Because our primary goal for case-

injection is enabling the CA to learn to defeat specific opponents, we first investi-

gate teachset injection.

5.1 Teachset Injection

In the previous chapter, I acted as the human player and competed against the

BOLs produced by a GA and CA. We recorded my actions as I competed against

the CA BOL, and found two significantly different BOLs that could win. The first

winning BOL I used, which we call the Easy Human (EH) BOL, was to build two

Marines, attack, and repeat six times. This BOL slowly chipped away at the CA

BOL’s Command Center, while also destroying some of the CA BOL’s SCVs early

on and slowing down how quickly structures were built. The second winning

BOL I used, which we call the Hard Human (HH) BOL, was to build nine SCVs,

then build seven Firebats and seven Vultures in parallel. This BOL builds a strong

defense and waits to destroy the CA BOL’s attack force. Once I destroyed the CA

BOL’s attack force, I build a few more units and destroys the CA BOL’s Command

Center. Both human BOLs required 75-bits to encode, compared to the 39-bits the

CA BOL used. We then reinitialized the CA population to random chromosomes

72

and injected the two human BOL into the CA’s teachset. We also removed the

baselines from our GA, and instead ran the GA against only the human BOLs. We

ran our GA and CA ten times, and used the average score of the entire population

at each generation for our results.

Our results show that the EH BOL was trivial to beat, and often could be beaten

by random chromosomes, as shown by Figure 5.1. On the other hand, the HH

BOL proved to be overwhelmingly difficult, and was never defeated in the initial

generation. This balance issue caused a problem for the GA. Although improving

Figure 5.1: Avg. number of wins of 13-action BOLs against human build-
orders.

the score against the EH BOL also slightly improved the score against the HH BOL,

as shown in Figure 5.2, the improvement did not lead to successful BOLs against

the HH BOL. As a result, the GA produced BOLs that were overspecialized to

defeat the EH BOL. The BOLs found by the GA quickly build two SCVs and a

73

Figure 5.2: Avg. score of 13-action BOL build-orders against human build-
orders.

couple Firebats to ward off the Marines while minimizing casualties, followed by

a mix of Firebats and Vultures used to attack the opponent’s base. The GA finds

the best BOL to defeat the EH BOL after about thirty generations.

However, our CA was able to quickly find solutions to defeat both human

BOLs, as shown in Figure 5.1. The CA typically found at least one BOL to de-

feat the HH BOL by generation ten. We also see that the average score against the

EH BOL peaks almost immediately, while the GA continues to improve and over-

specialize over all fifty generations. While the CA also immediately finds BOLs

to defeat the EH BOL, the other opponents in the teachset force the CA to explore

BOLs that defeat different opponents and prevent the CA from overspecializing at

the beginning. This leads to enough diverse BOLs that work well in general that

the CA finds solutions that also work against the HH BOL. These BOLs build two

74

SCVs, followed by Vultures, then attack. This BOL loses a few more units to the

EH BOL than the GA does, but enables the BOL to build a strong enough defense

to defend against the HH BOL. As Figure 5.2 shows, this compromise lowers the

score against the EH BOL significantly compared to the BOLs found by the GA but

dramatically increases the score against the HH BOL.

5.1.1 Conclusions

In this section, we want to find robust BOLs that also defeat specific opponents.

In the previous chapter, we compared BOLs found by a genetic algorithm trained

against three baselines to BOLs found by a coevolutionary algorithm. We then had

a human player (me) compete against the BOLs produced by the genetic algorithm

and coevolutionary algorithm. The human player found that the BOLs produced

by the coevolutionary algorithm were the most challenging to defeat.

This section expands upon the previous chapter by introducing case-injection

to our coevolutionary algorithm’s teachset, and comparing BOLs found by the co-

evolutionary algorithm to the BOLs found by a genetic algorithm. We had our

human player compete several times against the most challenging BOL found by

coevolution in the previous chapter. As the human player competed, we recorded

their actions to a bit-string, allowing us to replicate their actions and outcome

against the opponent. We recorded two different successful BOLs the human

player used against coevolution’s BOL. We then used the human player’s BOLs to

evaluate BOLs using a genetic algorithm, and injected the same two player BOLs

into coevolution’s teachset.

Our results showed that when an opponent poses a significant challenge, the

75

genetic algorithm will not find BOLs to defeat the opponent, and will instead over

specialize against the easier opponent. This was unexpected, since genetic algo-

rithms have been shown to produce good BOL against the opponents used in

training. However, when there are multiple opponents with a large difference in

difficulty, the genetic algorithm may converge too quickly on BOLs for the easy

opponents, which does not lead to solutions for the harder opponents. On the

other hand, coevolution finds BOLs to defeat both opponents after ten genera-

tions. Coevolution finds BOLs to beat the challenging opponent because coevo-

lution uses a diverse teachset that gradually increases in difficulty. This prevents

coevolution from converging to quickly, and allows coevolution to move towards

BOLs more capable of defeating the challenging opponent, even if no BOLs cur-

rently beat that opponent. We also show that coevolution increases the popula-

tion’s average score against the challenging opponent much faster than the genetic

algorithm does. These results are interesting compared to our previous studies,

where our genetic algorithm produced better BOLs than coevolution for defeat-

ing specific opponents, despite the genetic algorithm only competing against the

same three opponents while coevolution competed against eight opponents that

changed over time. This shows that while genetic algorithms can produce good

BOLs to defeat specific opponents, genetic algorithms can also be mislead if only

a few opponents are used for evaluation, or if the opponents have a large gap in

difficulty.

These results indicate that teachset case-injection helps coevolution to quickly

find BOLs that defeat specific opponents, while maintaining robustness against

other opponents. However, learning to defeat specific opponents is not the only

way a CA can learn from our stored cases. Learning to play like a specific opponent

will allow the CA to quickly find winning BOLs and adapt the specific case into

76

new BOLs, but may also affect the robustness of the generated build-orders. In

order to see if a CA can learn to play like a specific case, and if learning to play

like a specific case affects BOL robustness, we expanded our investigation to case-

injection into a CA’s population.

5.2 Population Injection

While the previous section only tested teachset injection, this section tests four

case-injection scenarios: no case-injection, case-injection into only the teachset,

case-injection into only the population, and case-injection into both the teachset

and population. When we do case injection into the teachset, every generation we

select two random BOLs from our case-base and put them in the teachset. With

case injection into the population, every five generations two random BOLs are se-

lected from our case-base to replace the two lowest shared fitness chromosomes in

the population. There are five cases we select for injection into the CA, which were

all hand-coded produced by our CA and GA in the previous chapters. We ran each

of our four injection scenarios ten times with a population size of 50 for 50 genera-

tions with a chromosome length of 39-bits (13-actions). We measure the robustness

of the BOLs produced by comparing them to five test cases that are never seen dur-

ing training. These test cases are different from the cases used for case injection,

but were also produced from hand-coding or coevolution in our previous studys

and were either robust or defeated our best evolved BOLs. Measuring the robust-

ness of every chromosome in every population would take excessively long, so we

limit ourselves to testing the best chromosome (the chromosome with the highest

shared fitness) in the population for every generation. We measure robustness by

examining the average score and number of wins against all five testing cases. We

77

also measure the Hamming Distance of the best chromosome to each of the five

injected cases [30]. We compare the all bits of two chromosomes, and for each bit-

position if the bit-value in one chromosome does not match the bit-value in the

other chromosome, we increase the Hamming Distance by one. This means that

the higher the Hamming Distance between two chromosomes, the less similar they

are to each other. Conversely, the lower the Hamming Distance between between

two chromosomes, the more similar they are to each other. This tells us how much

case injection has influenced the population to play like the injected cases. Finally,

our results are calculated by taking the average of the best chromosome for each

generation across all ten runs.

Our results show that the influence of case injection on a population varies

based on the cases and injection methods. We limit ourselves to showing the sim-

ilarity to only three of the five injected cases because they exemplified the results

of the remaining two. Our figures show that without case injection, that the

best chromosomes tends to become less similar to Training Case 1 (Fig. 5.3), more

similar to Training Case 2 (Fig. 5.4), and have little change in Hamming Distance

to Training Case 3 (Fig. 5.5). Injecting cases into only the teachset has little to

no effect on influencing the best chromosome to play like the injected cases. All

three figures show that the best chromosomes produced from teachset injection

have almost the same Hamming Distance as chromosomes produced without case

injection.

When we inject chromosomes into only the population or into both the popu-

lation and teachset, the results vary a bit more. Fig. 5.3 shows that after we inject

our first chromosomes into the population at generation 5, over time the best chro-

mosomes tend to become more similar to Training Case 1 than the chromosomes

78

Figure 5.3: Avg. Hamm. Dist. of 13-action BOLs to Case #1.

Figure 5.4: Avg. Hamm. Dist. of 13-action BOLs to Case #2.

79

Figure 5.5: Avg. Hamm. Dist. of 13-action BOLs to Case #3.

produced without case injection. On the other hand, Fig. 5.4 shows the opposite

effect. While the best cases produced without case injection tend to become more

similar to Training Case 2, the best cases produced from population injection tend

to become less similar over time. However, when we look at Training Case 1 and

Training Case 2, we see that with a Hamming Distance of 32 (out of a maximum

of 39) from each other these two cases are dissimilar. As one of these cases be-

gins to influence the population to play in a similar manner, then naturally that

means the population begins to play less like the other case. We see happening in

Fig. 5.3 and Fig. 5.4 , since the results in each almost perfectly mirror each other.

Training Case 1 builds two SCVs, ten Marine, then attacks, while Training Case 2

builds ten Vultures instead of Marines. The coevolved solutions that are similar to

Training Case 1 replaces three of the Marines with an additional two SCVs at the

beginning and a Firebat towards the end, allowing for an earlier attack that is suc-

80

Figure 5.6: Avg. score of 13-action BOLs vs all Testing Cases.

Figure 5.7: Avg. number of wins of 13-action BOLs vs all Testing Cases.

81

cessful against opponents that produce units slowly. Coevolved solutions similar

to Training Case 2 replaced one SCV and the attack command with a Firebat and

additional Vulture, allowing for a stronger defense force that takes longer to pro-

duce. Finally, while Training Case 1 influences the best cases to play in a similar

manner, Fig. 5.5 shows this does not affect the best cases’ similarity to Training

Case 3, which has a Hamming Distance of 19 to Training Cases 1 and 2.

While our CA manages to learn new BOLs from injecting cases into the pop-

ulation, we also want our coevolved BOLs to defeat a wide variety of opponents.

We test the robustness of the BOLs the CA produces by playing them against five

chromosomes we had previously hand-tuned or coevolved and that were never

seen during training. Our results show that while case injection into the popu-

lation increases the score against unknown opponents in early generations, BOLs

produced in the long term score only slightly higher than our other injection meth-

ods, as shown in Fig. 5.6. Fig. 5.7 also shows that over time our coevolved BOLs

win against more of the opponents. While Fig. 5.3 shows us that population injec-

tion influences our best chromosomes to play like some of the injected cases, Fig.

5.6 and Fig. 5.7 show us that our best BOLs continue to be at least as robust as

coevolution without case injection.

5.2.1 Conclusions

In this section we want to find robust, winning BOLs for Real-Time Strategy games.

We also want these BOLs to incorporate knowledge from winning BOLs other

players have used. We believe we can accomplish these goals by using case in-

jection with a coevolutionary algorithm. Case injection takes BOLs contained in

82

a case-base, and injects them into our coevolutionary algorithm’s population or

teachset. There are four case injection methods that we examine: case injection

into only the population, case injection into only the teachset, case injection into

both the population and teachset, and no case injection. We used each of these

methods ten times with a population size of 50 for 50 generations, and took the av-

erage across all ten runs for the best chromosome at each generation. When we do

case injection into the teachset, every generation we select two random BOLs from

our case-base and put them in the teachset. With case injection into the population,

every five generations two random BOLs are selected from our case-base to replace

the two lowest shared fitness chromosomes in the population. There are five win-

ning BOLs contained in our case-base that were produced from hand-tuning or

coevolution.

Our results show that while injecting into only the teachset does not affect the

similarity to the injected cases, injecting cases into the population had different

effects. We measured the similarity by calculating the Hamming Distance from

chromosomes in the population to each of the five cases in our case-base [30]. Some

injected cases affected the population more than others, influencing the chromo-

somes to play like some injected cases while also influencing to play unlike other

injected cases. For other cases, there seems to be no change in Hamming Distance

to the population. This shows that a coevolutionary population can be influenced

to play like injected cases, but some injected cases may have more influence than

others. However, we do not want chromosomes that learn to play like someone

else, to also inherit their flaws and lose robustness.

We tested the robustness of our results by competing the best chromosomes

against five chromosomes never seen during training. These testing chromosomes

83

are different from the chromosomes used for case injection, but were also produced

from hand-tuning and coevolution. Our results showed that although injecting

cases into the population influenced the best chromosomes in the population to

play like the injected cases, these new chromosomes did not lose robustness, and

defeated at least as many opponents as BOLs produced from coevolution without

case injection.

These results indicate case injection into a coevolutionary population will in-

fluence coevolution to quickly produce similar winning BOLs, while maintaining

robustness. This informs our research into adapting new BOLs from previously en-

countered opponents. Our results thus far have indicated that a CA is a viable ap-

proach for generating robust BOLs. We are also interested in finding build-orders

which are strong, and defeat opponents quickly. While our CA produced winning

build-orders with our BOL representation, BOL only encodes a single, arbitrary

length sequence of actions. We believe that a representation that encodes multi-

ple sequences would enable a CA to produce stronger build-orders. As such, we

extended our representation from BOL to BOIL.

84

CHAPTER 6

PHASE THREE: BUILD-ORDER STRENGTH

We believe that adding branches and loops to our BOL representation will enable

our evolutionary methods to produce build-orders with better performance. How-

ever, investigating this new representation requires a large amount of evaluations

that WaterCraft could not complete in a reasonable amount of time. As a result, in-

stead of using WaterCraft for this investigation, we changed our RTS environment

to BOSS and SparCraft. In order to test BOSS and SparCraft, we performed ex-

haustive search on the outcome 5-action BOLs against our three hand-coded base-

lines in BOSS. As Figure 6.1 shows our results are qualatatively the same, Baseline

Figure 6.1: Comparing 5-action BOL outcomes in WaterCraft and BOSS.

Small is the easiest to defeat while Baseline Medium is the most difficult to defeat.

However, Baseline Large and Baseline Medium are significantly easier to defeat

85

Figure 6.2: Avg. combat duration of 13-action BOILs.

in BOSS than in WaterCraft. Due to the different gameplay and unit properties,

the baselines pose less of a challenge in BOSS than in WaterCraft, because BOSS

and WaterCraft are functionally different games. Despite the differences, our ap-

proaches should work in BOSS equally as they would in WaterCraft or any other

RTS game. As such, we use BOSS and SparCraft to continue our research into our

BOIL representation.

BOIL removes the automatic dependency resolution for units, requiring the

CA and GA to determine which prerequisites are needed and when. Without au-

tomatic dependency resolution, finding valid build-orders becomes more difficult,

but also allows the evolutionary methods to determine how much unit production

infrastructure to build, allowing quicker production of combat units. We use BOSS

to compare GA and CA results to four BOIL configurations: BOIL with no encoded

86

branches/loops (acts as our baseline), BOIL with one encoded condition (less than

seven available units), BOIL with one encoded condition (greater than or equal to

seven available units), and BOIL with both conditions. Build-orders are given a

maximum of seven minutes to construct units. After seven minutes the available

units for both players are forced to attack, though players can choose to attack and

begin combat earlier in the game. We run our GA and CA for all cases 50 times,

with a population of 50 for 100 generations and take the average of the results in

each generation. We restrict BOIL to 13-build actions, to keep consistent with our

previous research.

Our results in Figure 6.2 show that for all BOIL representations, the CA finds

build-orders that have close to the same performance as the GA build-orders. We

attribute this result to the baselines being easier in BOSS than in WaterCraft. Due to

the collision detection limitations in SparCraft, SCVs and Marines are more effec-

tive in SparCraft than in WaterCraft. Build-orders produced by the CA and GA are

biased towards building many SCVs and Marines, and waiting for the opponent to

attack. The CA bootstraps opponents more difficult than the baselines, leading the

CA to find build-orders that defeat the baselines as quickly as the GA build-orders

do.

Build-orders produced with BOIL’s less-than condition perform the worst, tak-

ing 10 seconds longer to defeat all opponents in combat. The GA and CA use the

less-than condition in the beginning of the build-order to build four SCVs and two

Barracks. However, since players start the game with 5 SCVs, players negate the

condition after finishing the construction of two units. The GA and CA organize

build actions in the loop such that the 7th total unit finishes constructing after the

condition for the 2nd iteration of the loop evaluates as true, allowing the loop to

87

Figure 6.3: Avg. wins of 13-action BOILs from different approaches.

Figure 6.4: Avg. score of 13-action BOILs from different approaches.

88

repeat once. After finishing the loop with BOIL’s less-than condition, only a fi-

nite number of build actions remain. The remaining build actions make use of the

Barracks previously built by constructing Marines and SCVs in parallel with the

remaining build actions.

With the greater-than condition, the GA and CA first builds a Barracks and

SCVs outside the loop, then use the greater-than condition at the end of the build-

order to build as many Marines and SCVs as possible. BOIL that utilizes the

greater-than condition or both conditions wins combat the quickest, winning in

combat 20 seconds faster than BOIL with no conditions. With both conditions,

BOIL utilizes the less-than condition to build multiple Barracks and SCVs in a loop,

constructs an additional Barracks and SCVs once outside the loop, then uses the

greater-than condition to infinitely loop through build actions to quickly produce

Marines and SCVs. BOIL only utilizes the branch/IF instruction inside of loops to

extend the length of the loop. Unlike with BOL, interpreting the behaviour of BOIL

build-orders is difficult without observing the build-order during a game. Nesting

loops and branches makes deciphering which units are built in which order hard

for humans.

Figure 6.3 and Figure 6.4 shows us that while all the BOIL methods learn to

quickly defeat the baselines, no condition BOIL learns the fastest. BOIL with con-

ditions takes longer to tune than without conditions, and the less-than condition

takes longer to defeat all opponents. However, Figure 6.5 shows by incorporating

both conditions, BOIL outperforms the single-condition BOILs, as well as no con-

dition BOIL. Two-condition BOIL takes over 50 generations to defeat opponents

as quickly as no condition BOIL, but ultimately finds build-orders that defeat op-

ponents faster. Figure 6.5 also shows on average, random 13-action BOIL build-

89

Figure 6.5: Avg. combat duration of 13-action BOILs from different ap-
proaches.

orders only win 30% of the time against three baselines, while Figure 6.1 shows

all three baselines lose to 50% of all possible 5-action BOL build-orders. Despite

BOIL encoding more actions than BOL, the build-orders are more difficult for BOIL

build-orders to overcome. Finding winning build-orders without automatic pre-

requisite detection poses a greater challenge for BOIL build-orders. These results

show the trade-offs made when representing branches and loops in evolutionary

methods. Our BOIL build-order representation benefits from multiple conditions

even when one of the conditions is not advantageous individually. Evolutionary

methods take advantage of the branches and loops to produce build-orders that

win 20 seconds faster than build-orders without branches and loops. However,

the added complexity of branches and loops take evolutionary methods longer to

optimize.

90

6.1 Conclusions

In this chapter, we investigated a new representation that enabled our CA to pro-

duce stronger build-orders which defeated opponents quicker. While our pre-

vious BOL representation enabled the CA to find robust build-orders, BOL can

only represent a single, limited length sequence of actions. In order to create

stronger build-orders, we needed a new representation that can represent mul-

tiple sequences. To this end, we extended our BOL representation by including

branches and loops with different conditionals, and called the extended represen-

tation Build-Order Iterative Lists (BOIL). We investigated four different BOIL con-

figurations: BOIL with no encoded branches/loops (acts as our baseline), BOIL

with one encoded condition (less than seven available units), BOIL with one en-

coded condition (greater than or equal to seven available units), and BOIL with

both conditions. However, in order to evaluate four BOIL configures, we needed

an RTS environment that could produce results quicker. As such, we developed

BOSS specifically for simulating build-orders, and paired BOSS with SparCraft to

evaluate the results of combat.

Our results show that evolutionary methods benefit from branches and loops

with multiple conditions to choose from, allowing stronger build-orders that win

faster. Additionally, evolutionary methods show a benefit from using multiple

conditions, even when one of the conditions show no advantages individually.

A BOIL representation that encodes two conditions enables the CA to produce a

build-order which wins against opponents faster than build-orders using other

BOIL configurations. However, it takes a CA more time to tune the branches

and loops in order to produce a winning BOIL, compared to a BOIL with no

branches and loops. These results inform our research into coevolving stronger

91

build-orders. Combined with our results from the previous chapters, our research

has taken a small step towards finding strong, robust build-orders. In the next

chapter, we discuss our conclusions and contributions towards advancing game

AI research.

92

CHAPTER 7

CONCLUSION

Our research investigates a coevolutionary approach to producing robust, strong

build-orders for Real-Time Strategy (RTS) games. Finding build-orders is a chal-

lenging scheduling problem that players must master in order to defeat opponents

in an RTS game. However, in order to search for robust build-orders, we required

an RTS environment that allowed us to test build-orders in a game. As such,

we developed two RTS systems, WaterCraft and Build-Order Software Simulation

(BOSS) to act as testbeds for our research. In addition to an RTS environment, we

also required a build-order representation that our search methods could utilize,

so we initially represented build-order as a sequence of actions we call Build-Order

Lists (BOLs). In order to begin our research into generating robust build-orders,

we compared BOLs produced by three different approaches: a genetic algorithm

(GA), a coevolutionary algorithm (CA), and a bit-setting hill-climber (HC).

To compare the quality of build-orders found by our CA, GA, and HC, we re-

quired an absolute measure of quality, such as exhaustive search. However, ex-

haustive search is computationally expensive, so we limited ourselves to exhaus-

tively searching the outcomes of 5-action build-orders against three hand-coded

baselines. Our research showed that compared to exhaustive search against our

three baseline opponents, a GA always finds the highest scoring build-orders that

defeat the baselines, but not the most robust build-orders. On the other hand, a

CA found build-orders that are robust and defeat many opponents, but the build-

orders did not always defeat our specific baselines. These results inform us that a

CA is a promising approach for generating robust build-orders, but has a limita-

tion on defeating specific opponents. In order to influence a CA towards defeating

93

specific opponents, we needed a method that enabled the CA to learn from specific

opponents. As such, we investigated case-injection into a CA.

Case-injection introduces specific build-orders into a CA, which enables a CA

to incorporate knowledge from the injected cases. In order to enable our CA

to learn from specific opponents, we investigated two case-injection approaches:

case-injection into a CA’s teachset and case-injection into a CA’s population. Ad-

ditionally, we compared the build-orders produced by a case-injected CA to a GA

which competed against only the cases used for injection. Our results showed

that contrary to previous results, a GA can be misled when a large difficulty gap

exists between training opponents. Instead of learning to defeat both opponents,

the GA overspecialized for the easier opponent, while ignoring the difficult op-

ponent. On the other hand, build-orders generated by a CA remained robust and

eventually found build-orders that defeated both opponents. We also showed that

case-injection into the CA population produced build-orders similar to some of the

injected cases, without negatively impacting build-order robustness. These results

indicate that a CA is suitable for learning from specific opponents, while maintain-

ing robust build-orders. However, while the BOLs generated by the CA are robust,

BOLs only encode a single sequence of build-actions. In addition to being robust,

we also want build-orders that are strong and defeat opponents quickly. In order

to find stronger build-orders, we investigated a new representation which enables

a build-order to contain multiple sequences of actions.

To this end, we extended our BOL representation by introducing branches and

loops, creating a new representation we called Build-Order Iterative List (BOIL).

We used a CA to produce BOILs with four different configurations: BOIL with no

encoded branches/loops (acts as our baseline), BOIL with one encoded condition

94

(less than seven available units), BOIL with one encoded condition (greater than

or equal to seven available units), and BOIL with both conditions. Our results

showed a CA takes advantage of multiple loops and conditions in order and pro-

duced build-orders stronger than build-orders lacking branches and loops. How-

ever, generating strong build-orders with branches and loops required more time

than generating build-orders without branches and loops. These results indicate

that CAs are a promising approach for generating robust, strong build-orders, and

our work has contributed towards advancing computational and artificial intelli-

gence in RTS games.

7.1 Contributions

Our work has contributed to computational and artificial intelligence research in

three ways. First, we applied a CA towards finding robust build-orders in an RTS

game. While CAs have previously been used to address problems in RTS games, to

the best of our knowledge CAs have not been applied specifically towards generat-

ing robust build-orders. Our results showed that a CA is a promising approach for

generating robust build-orders, which may indicate a CA would also be suitable

for solving similar real-world problems.

Second, we showed that case-injection enabled our CA to learn from specific

opponents, while maintaining robustness. Injecting specific build-orders into a co-

evolutionary teachset enabled the CA to generate build-orders that defeated the

specific cases we injected. Additionally, we also injected cases into coevolution’s

population, which enabled the CA to generate build-orders which played like the

injected cases. These results indicate that a CA can learn from specific cases, while

95

continuing to produce robust build-orders. Being able to quickly learn from spe-

cific opponents is an important feature in an environment with no single dominat-

ing strategy. Defeating many opponents is meaningless if the build-order cannot

defeat the opponent currently being faced. Learning quickly from opponents en-

ables build-orders to adapt and stay relevant against new opponent innovations.

Third, our results showed that CAs benefit from a representation which in-

cludes branches and loops. Branches and loops enabled our representation to cre-

ate build-orders with multiple sequences of build-actions. Our results indicated

that branches and loops enables the CA to find stronger build-orders, but required

additional time to optimize the branches and loops. These results showed the

trade-offs that we must make with our build-order representation, whether we

want to quickly produce robust build-orders, or slowly produce stronger build-

orders. Showing that a CA can utilize branches and loops to improve build-order

performance demonstrates that a CA is a promising approach to generating com-

plex rules and behaviours for build-orders. While our research has taken a small

step towards advancing game AI, additional extensions and problems remain for

future investigations.

7.2 Extensions and Future Work

Our work would benefit from different directions of additional research. For the

sake of a compact representation and exhaustive search, our work only inves-

tigated build-order representations which included four out of over forty units

available in StarCraft. Including more of these StarCraft units would enable more

diverse build-orders, and creates more intransitive relationships between build-

96

orders. It would be interesting to see how a CA copes with the additional com-

plexity, and how many different niches of build-orders the CA population might

contain. Increasing the complexity of the coevolved build-orders may also make

case-injection even more important.

While selecting cases at random and our rate of injecting cases worked well in

practice, a CA may benefit more from different injection parameters. Identifying

which cases to inject in order to create stronger build-orders could help a CA learn

faster and create more diverse build-orders. Additionally, determining the fre-

quency at which to inject cases, and whether to inject into the CA’s population or

teachset could also help. Our case-injection work also investigated injecting cases

that were modeled after a human player’s behaviour. However, we only modeled

a human’s behaviour using the BOL representation.

Modeling human behaviour in a representation with branches and loops, such

as BOIL, presents additional challenges. We may not be able to perfectly model

all of a specific human’s behaviour in BOIL, and there may be several different

BOILs that closely approximate a specific human’s behaviour. Determining how

to model a specific human’s behaviour in BOIL and selecting from multiple BOILs

that approximate a specific human’s behaviour could help a CA learn faster from

stronger build-orders. However, human’s make decisions by considering a wide

variety of conditions. For example, rather than consider how many total units

are built, a player may consider how many units of each type are built. In order

to model this behaviour and create more diverse build-orders, we would need to

encode many more conditions for branches and loops to consider. Additionally, in

order to more accurately model human behavior’s, the number of actions that a

branch or loop contain may need to be larger, or vary on a case to case basis.

97

In addition to macromangement and build-order planning, human behaviour

is also defined by micromanagement decisions, such as unit positioning and select-

ing an attack target. To this end, future work could investigate build-orders which

enable multiple game AI’s to win, and later expand to coevolving micromanage-

ment behaviours along with the build-orders. Finally, our current and future work

could be used to create a system to perpetually learn from humans and coevolve

new build-orders. As humans compete against a game AI, we could automatically

model the human’s build-order and inject it into coevolution as necessary. The

next time the human plays the game, the human will have to compete against a

newly coevolved build-order that learned from the previous encounter with the

human.

98

BIBLIOGRAPHY

[1] Phillipa Avery and Sushil Louis. Coevolving influence maps for spatial team
tactics in a rts game. In Proceedings of the 12th annual conference on Genetic and
evolutionary computation, pages 783–790. ACM, 2010.

[2] Robert Axelrod. The evolution of strategies in the iterated prisoners dilemma.
The dynamics of norms, pages 1–16, 1987.

[3] Christopher Ballinger and Sushil Louis. Comparing coevolution, genetic al-
gorithms, and hill-climbers for finding real-time strategy game plans. In Pro-
ceeding of the fifteenth annual conference companion on Genetic and evolutionary
computation conference companion, pages 47–48. ACM, 2013.

[4] Christopher Ballinger and Sushil Louis. Comparing heuristic search methods
for finding effective real-time strategy game plans. In Computational Intelli-
gence for Security and Defense Applications (CISDA), 2013 IEEE Symposium on,
pages 16–22. IEEE, 2013.

[5] Christopher Ballinger and Sushil Louis. Finding robust strategies to defeat
specific opponents using case-injected coevolution. In Computational Intelli-
gence in Games (CIG), 2013 IEEE Conference on, pages 1–8. IEEE, 2013.

[6] Christopher Ballinger and Sushil Louis. Robustness of coevolved strategies
in a real-time strategy game. In Evolutionary Computation (CEC), 2013 IEEE
Congress on, pages 1379–1386. IEEE, 2013.

[7] Christopher Ballinger and Sushil Louis. Learning robust build-orders from
previous opponents with coevolution. In Computational Intelligence and Games
(CIG), 2014 IEEE Conference on, pages 1–8. IEEE, 2014.

[8] Christopher Ballinger, Sushil Louis, and Siming Liu. Coevolving robust build-
order iterative lists for real-time strategy games (submitted for consideration).
Computational Intelligence and AI in Games, 2015 IEEE Transactions on, 2015.

[9] Nils Aall Barricelli. Numerical testing of evolution theories. Acta Biotheoretica,
16(1-2):69–98, 1962.

[10] Nils Aall Barricelli. Numerical testing of evolution theories. Acta Biotheoretica,
16(3-4):99–126, 1963.

[11] Blizzard Entertainment. StarCraft, March 1998.

99

[12] Bruno Bouzy and Guillaume Chaslot. Monte-carlo go reinforcement learning
experiments. In Computational Intelligence and Games, 2006 IEEE Symposium on,
pages 187–194. IEEE, 2006.

[13] Michael Buro. The othello match of the year: Takeshi murakami vs logistello.
ICCA Journal, 20(3):189–193, 1997.

[14] Michael Buro. Orts - a free software rts game engine, 2005.

[15] Michael Buro and David Churchill. Real-time strategy game competitions. AI
Magazine, 33(3):106, 2012.

[16] BWAPI Team. BWAPI: An api for interacting with StarCraft: Broodwar.

[17] Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Ar-
tificial intelligence, 134(1):57–83, 2002.

[18] Kumar Chellapilla and David B Fogel. Evolving neural networks to play
checkers without relying on expert knowledge. Neural Networks, IEEE Trans-
actions on, 10(6):1382–1391, 1999.

[19] Kumar Chellapilla and David B Fogel. Evolving an expert checkers play-
ing program without using human expertise. Evolutionary Computation, IEEE
Transactions on, 5(4):422–428, 2001.

[20] Ho-Chul Cho, Kyung-Joong Kim, and Sung-Bae Cho. Replay-based strategy
prediction and build order adaptation for starcraft ai bots. In Computational
Intelligence in Games (CIG), 2013 IEEE Conference on, pages 1–7. IEEE, 2013.

[21] David Churchill. Sparcraft, 2013.

[22] David Churchill and Michael Buro. Build order optimization in starcraft. In
AIIDE, 2011.

[23] Peter I Cowling, Munir Hussain Naveed, and M Alamgir Hossain. A coevo-
lutionary model for the virus game. In Computational Intelligence and Games,
2006 IEEE Symposium on, pages 45–51. IEEE, 2006.

[24] James Edward Davis and Graham Kendall. An investigation, using co-
evolution, to evolve an awari player. In Evolutionary Computation, 2002.
CEC’02. Proceedings of the 2002 Congress on, volume 2, pages 1408–1413. IEEE,
2002.

100

[25] Arpad E Elo. The rating of chessplayers, past and present, volume 3. Batsford
London, 1978.

[26] Larry J Eshelman. The chc adaptive search algorithm: How to have safe
search when engaging in nontraditional genetic recombination. Foundations
of genetic algorithms, pages 265–283, 1990.

[27] David B Fogel. Blondie24: Playing at the Edge of AI. Morgan Kaufmann, 2001.

[28] David E Goldberg. Genetic algorithms in search, optimization, and machine learn-
ing. Addison-Wesley Professional, 1989.

[29] Johan Hagelback. Potential-field based navigation in starcraft. In Compu-
tational Intelligence and Games (CIG), 2012 IEEE Conference on, pages 388–393.
IEEE, 2012.

[30] Richard W Hamming. Error detecting and error correcting codes. Bell System
technical journal, 29(2):147–160, 1950.

[31] W Daniel Hillis. Co-evolving parasites improve simulated evolution as an
optimization procedure. Physica D: Nonlinear Phenomena, 42(1):228–234, 1990.

[32] Stephen Hladky and Vadim Bulitko. An evaluation of models for predict-
ing opponent positions in first-person shooter video games. In Computational
Intelligence and Games, 2008. CIG’08. IEEE Symposium On, pages 39–46. IEEE,
2008.

[33] Hai Hoang, Stephen Lee-Urban, and Héctor Muñoz-Avila. Hierarchical plan
representations for encoding strategic game ai. In AIIDE, pages 63–68, 2005.

[34] John H Holland. Adaptation in natural and artificial systems: An introductory
analysis with applications to biology, control, and artificial intelligence. U Michigan
Press, 1975.

[35] Sergey Karakovskiy and Julian Togelius. The mario ai benchmark and com-
petitions. Computational Intelligence and AI in Games, IEEE Transactions on,
4(1):55–67, 2012.

[36] David Keaveney and Colm O’Riordan. Evolving robust strategies for an ab-
stract real-time strategy game. In Computational Intelligence and Games, 2009.
CIG 2009. IEEE Symposium on, pages 371–378. IEEE, 2009.

101

[37] Alex Kovarsky and Michael Buro. A first look at build-order optimization
in real-time strategy games. In Proceedings of the GameOn Conference, pages
18–22, 2006.

[38] Siming Liu, Sushil J Louis, and Monica Nicolescu. Using cigar for finding
effective group behaviors in rts game. In Computational Intelligence in Games
(CIG), 2013 IEEE Conference on, pages 1–8. IEEE, 2013.

[39] Daniele Loiacono, Pier Luca Lanzi, Julian Togelius, Enrique Onieva, David A
Pelta, Martin V Butz, Thies D Lonneker, Luigi Cardamone, Diego Perez, Yago
Sáez, et al. The 2009 simulated car racing championship. Computational Intel-
ligence and AI in Games, IEEE Transactions on, 2(2):131–147, 2010.

[40] Daniele Loiacono, Alessandro Prete, Pier Luca Lanzi, and Luigi Cardamone.
Learning to overtake in torcs using simple reinforcement learning. In Evolu-
tionary Computation (CEC), 2010 IEEE Congress on, pages 1–8. IEEE, 2010.

[41] Sushil J Louis and John McDonnell. Learning with case-injected genetic algo-
rithms. Evolutionary Computation, IEEE Transactions on, 8(4):316–328, 2004.

[42] Sushil J Louis and Chris Miles. Playing to learn: case-injected genetic algo-
rithms for learning to play computer games. Evolutionary Computation, IEEE
Transactions on, 9(6):669–681, 2005.

[43] Nicholas Gregory Mankiw. Principles of Economics. Harcourt College Publish-
ers, second edition, 1998.

[44] Christopher Miles. Co-Evolving Real Time Strategy Game Players. PhD thesis,
University of Nevada, 2007.

[45] Ann E Nicholson, Kevin B Korb, and Darren Boulton. Using bayesian deci-
sion networks to play texas holdem poker. International Computer Games Asso-
ciation (ICGA) Journal (Unveröffentlichter Entwurf). Monash University, Victoria,
Australien, 2006.

[46] Geoff Nitschke. Co-evolution of cooperation in a pursuit evasion game. In
Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ In-
ternational Conference on, volume 2, pages 2037–2042. IEEE, 2003.

[47] Santiago Ontanón, Gabriel Synnaeve, Alberto Uriarte, Florian Richoux, David
Churchill, and Mike Preuss. A survey of real-time strategy game ai research

102

and competition in starcraft. Computational Intelligence and AI in Games, IEEE
Transactions on, 5(4), 2013.

[48] Marc Ponsen, Héctor Muñoz-Avila, Pieter Spronck, and David W Aha. Au-
tomatically generating game tactics through evolutionary learning. AI Maga-
zine, 27(3):75, 2006.

[49] Marc JV Ponsen, Stephen Lee-Urban, Héctor Muñoz-Avila, David W Aha, and
Matthew Molineaux. Stratagus: An open-source game engine for research in
real-time strategy games. Reasoning, Representation, and Learning in Computer
Games, page 78, 2005.

[50] Philipp Rohlfshagen and Simon M Lucas. Ms pac-man versus ghost team cec
2011 competition. In Evolutionary Computation (CEC), 2011 IEEE Congress on,
pages 70–77. IEEE, 2011.

[51] Christopher D Rosin and Richard K Belew. New methods for competitive
coevolution. Evolutionary Computation, 5(1):1–29, 1997.

[52] Stuart J Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2 edition, 2003.

[53] Spyridon Samothrakis, David Robles, and Simon Lucas. Fast approximate
max-n monte carlo tree search for ms pac-man. Computational Intelligence and
AI in Games, IEEE Transactions on, 3(2):142–154, 2011.

[54] Jonathan Schaeffer. A gamut of games. AI Magazine, 22(3):29, 2001.

[55] Jonathan Schaeffer, Robert Lake, Paul Lu, and Martin Bryant. Chinook the
world man-machine checkers champion. AI Magazine, 17(1):21, 1996.

[56] Pieter Spronck, Marc Ponsen, Ida Sprinkhuizen-Kuyper, and Eric Postma.
Adaptive game ai with dynamic scripting. Machine Learning, 63(3):217–248,
2006.

[57] Stargus Team. Stargus, 2009.

[58] Gabriel Synnaeve and Pierre Bessiere. Special tactics: A bayesian approach to
tactical decision-making. In Computational Intelligence and Games (CIG), 2012
IEEE Conference on, pages 409–416. IEEE, 2012.

103

[59] Gerald Tesauro. Td-gammon, a self-teaching backgammon program, achieves
master-level play. Neural computation, 6(2):215–219, 1994.

[60] Torus Knot Software Ltd. Ogre - open source 3d graphics engine, February
2005.

[61] Guy Van den Broeck, Kurt Driessens, and Jan Ramon. Monte-carlo tree search
in poker using expected reward distributions. In Advances in Machine Learning,
pages 367–381. Springer, 2009.

[62] Michael van Lent and John Laird. Developing an artificial intelligence engine.
Ann Arbor, 1001:48109–2110, 1998.

[63] Wargus Team. Wargus, 2011.

[64] Ian Watson and Jonathan Rubin. Casper: A case-based poker-bot. In AI 2008:
Advances in Artificial Intelligence, pages 594–600. Springer, 2008.

[65] Ben George Weber and Michael Mateas. Case-based reasoning for build or-
der in real-time strategy games. In Artificial Intelligence and Interactive Digital
Entertainment (AIIDE 2009), 2009.

[66] Stefan Wender and Ian Watson. Applying reinforcement learning to small
scale combat in the real-time strategy game starcraft: broodwar. In Compu-
tational Intelligence and Games (CIG), 2012 IEEE Conference on, pages 402–408.
IEEE, 2012.

[67] Stewart W Wilson. Ga-easy does not imply steepest-ascent optimizable. In
Proceedings of the Fourth International Conference on Genetic Algorithms, pages
85–89. Morgan Kaufman, 1991.

[68] Geogios N Yannakakis. Game ai revisited. In Proceedings of the 9th conference
on Computing Frontiers, pages 285–292. ACM, 2012.

[69] Sule Yildirim and Sindre Berg Stene. A survey on the need and use of ai in
game agents. In Proceedings of the 2008 Spring simulation multiconference, pages
124–131. Society for Computer Simulation International, 2008.

