20,052 research outputs found

    PadChest: A large chest x-ray image dataset with multi-label annotated reports

    Get PDF
    We present a labeled large-scale, high resolution chest x-ray dataset for the automated exploration of medical images along with their associated reports. This dataset includes more than 160,000 images obtained from 67,000 patients that were interpreted and reported by radiologists at Hospital San Juan Hospital (Spain) from 2009 to 2017, covering six different position views and additional information on image acquisition and patient demography. The reports were labeled with 174 different radiographic findings, 19 differential diagnoses and 104 anatomic locations organized as a hierarchical taxonomy and mapped onto standard Unified Medical Language System (UMLS) terminology. Of these reports, 27% were manually annotated by trained physicians and the remaining set was labeled using a supervised method based on a recurrent neural network with attention mechanisms. The labels generated were then validated in an independent test set achieving a 0.93 Micro-F1 score. To the best of our knowledge, this is one of the largest public chest x-ray database suitable for training supervised models concerning radiographs, and the first to contain radiographic reports in Spanish. The PadChest dataset can be downloaded from http://bimcv.cipf.es/bimcv-projects/padchest/

    Sliced Wasserstein Generative Models

    Full text link
    In generative modeling, the Wasserstein distance (WD) has emerged as a useful metric to measure the discrepancy between generated and real data distributions. Unfortunately, it is challenging to approximate the WD of high-dimensional distributions. In contrast, the sliced Wasserstein distance (SWD) factorizes high-dimensional distributions into their multiple one-dimensional marginal distributions and is thus easier to approximate. In this paper, we introduce novel approximations of the primal and dual SWD. Instead of using a large number of random projections, as it is done by conventional SWD approximation methods, we propose to approximate SWDs with a small number of parameterized orthogonal projections in an end-to-end deep learning fashion. As concrete applications of our SWD approximations, we design two types of differentiable SWD blocks to equip modern generative frameworks---Auto-Encoders (AE) and Generative Adversarial Networks (GAN). In the experiments, we not only show the superiority of the proposed generative models on standard image synthesis benchmarks, but also demonstrate the state-of-the-art performance on challenging high resolution image and video generation in an unsupervised manner.Comment: This paper is accepted by CVPR 2019, accidentally uploaded as a new submission (arXiv:1904.05408, which has been withdrawn). The code is available at this https URL https:// github.com/musikisomorphie/swd.gi

    Bilinear Random Projections for Locality-Sensitive Binary Codes

    Full text link
    Locality-sensitive hashing (LSH) is a popular data-independent indexing method for approximate similarity search, where random projections followed by quantization hash the points from the database so as to ensure that the probability of collision is much higher for objects that are close to each other than for those that are far apart. Most of high-dimensional visual descriptors for images exhibit a natural matrix structure. When visual descriptors are represented by high-dimensional feature vectors and long binary codes are assigned, a random projection matrix requires expensive complexities in both space and time. In this paper we analyze a bilinear random projection method where feature matrices are transformed to binary codes by two smaller random projection matrices. We base our theoretical analysis on extending Raginsky and Lazebnik's result where random Fourier features are composed with random binary quantizers to form locality sensitive binary codes. To this end, we answer the following two questions: (1) whether a bilinear random projection also yields similarity-preserving binary codes; (2) whether a bilinear random projection yields performance gain or loss, compared to a large linear projection. Regarding the first question, we present upper and lower bounds on the expected Hamming distance between binary codes produced by bilinear random projections. In regards to the second question, we analyze the upper and lower bounds on covariance between two bits of binary codes, showing that the correlation between two bits is small. Numerical experiments on MNIST and Flickr45K datasets confirm the validity of our method.Comment: 11 pages, 23 figures, CVPR-201
    corecore