526 research outputs found

    Finding Monotone Patterns in Sublinear Time

    Get PDF
    We study the problem of finding monotone subsequences in an array from the viewpoint of sublinear algorithms. For fixed k ϵ N and ε > 0, we show that the non-adaptive query complexity of finding a length-k monotone subsequence of f : [n] → R, assuming that f is ε-far from free of such subsequences, is Θ((log n) ^{[log_2k]}). Prior to our work, the best algorithm for this problem, due to Newman, Rabinovich, Rajendraprasad, and Sohler (2017), made (log n) ^{O(k2)} non-adaptive queries; and the only lower bound known, of Ω(log n) queries for the case k = 2, followed from that on testing monotonicity due to Ergün, Kannan, Kumar, Rubinfeld, and Viswanathan (2000) and Fischer (2004)

    05291 Abstracts Collection -- Sublinear Algorithms

    Get PDF
    From 17.07.05 to 22.07.05, the Dagstuhl Seminar 05291 ``Sublinear Algorithms\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    The min-max edge q-coloring problem

    Full text link
    In this paper we introduce and study a new problem named \emph{min-max edge qq-coloring} which is motivated by applications in wireless mesh networks. The input of the problem consists of an undirected graph and an integer qq. The goal is to color the edges of the graph with as many colors as possible such that: (a) any vertex is incident to at most qq different colors, and (b) the maximum size of a color group (i.e. set of edges identically colored) is minimized. We show the following results: 1. Min-max edge qq-coloring is NP-hard, for any q≥2q \ge 2. 2. A polynomial time exact algorithm for min-max edge qq-coloring on trees. 3. Exact formulas of the optimal solution for cliques and almost tight bounds for bicliques and hypergraphs. 4. A non-trivial lower bound of the optimal solution with respect to the average degree of the graph. 5. An approximation algorithm for planar graphs.Comment: 16 pages, 5 figure

    Classification of discrete weak KAM solutions on linearly repetitive quasi-periodic sets

    Full text link
    In discrete schemes, weak KAM solutions may be interpreted as approximations of correctors for some Hamilton-Jacobi equations in the periodic setting. It is known that correctors may not exist in the almost periodic setting. We show the existence of discrete weak KAM solutions for non-degenerate and weakly twist interactions in general. Furthermore, assuming equivariance with respect to a linearly repetitive quasi-periodic set, we completely classify all possible types of weak KAM solutions.Comment: 44 pages, 1 figur
    • …
    corecore