2 research outputs found

    Application of heuristic satellite plan synthesis algorithms to requirements of the WARC-88 allotment plan

    Get PDF
    Creation of an Allotment Plan for the Fixed Satellite Service at the 1988 Space World Administrative Radio Conference (WARC) represented a complex satellite plan synthesis problem, involving a large number of planned and existing systems. Solutions to this problem at WARC-88 required the use of both automated and manual procedures to develop an acceptable set of system positions. Development of an Allotment Plan may also be attempted through solution of an optimization problem, known as the Satellite Location Problem (SLP). Three automated heuristic procedures, developed specifically to solve SLP, are presented. The heuristics are then applied to two specific WARC-88 scenarios. Solutions resulting from the fully automated heuristics are then compared with solutions obtained at WARC-88 through a combination of both automated and manual planning efforts

    New Heuristics For The 0-1 Multi-dimensional Knapsack Problems

    Get PDF
    This dissertation introduces new heuristic methods for the 0-1 multi-dimensional knapsack problem (0-1 MKP). 0-1 MKP can be informally stated as the problem of packing items into a knapsack while staying within the limits of different constraints (dimensions). Each item has a profit level assigned to it. They can be, for instance, the maximum weight that can be carried, the maximum available volume, or the maximum amount that can be afforded for the items. One main assumption is that we have only one item of each type, hence the problem is binary (0-1). The single dimensional version of the 0-1 MKP is the uni-dimensional single knapsack problem which can be solved in pseudo-polynomial time. However the 0-1 MKP is a strongly NP-Hard problem. Reduced cost values are rarely used resources in 0-1 MKP heuristics; using reduced cost information we introduce several new heuristics and also some improvements to past heuristics. We introduce two new ordering strategies, decision variable importance (DVI) and reduced cost based ordering (RCBO). We also introduce a new greedy heuristic concept which we call the sliding concept and a sub-branch of the sliding concept which we call sliding enumeration . We again use the reduced cost values within the sliding enumeration heuristic. RCBO is a brand new ordering strategy which proved useful in several methods such as improving Pirkul\u27s MKHEUR, a triangular distribution based probabilistic approach, and our own sliding enumeration. We show how Pirkul\u27s shadow price based ordering strategy fails to order the partial variables. We present a possible fix to this problem since there tends to be a high number of partial variables in hard problems. Therefore, this insight will help future researchers solve hard problems with more success. Even though sliding enumeration is a trivial method it found optima in less than a few seconds for most of our problems. We present different levels of sliding enumeration and discuss potential improvements to the method. Finally, we also show that in meta-heuristic approaches such as Drexl\u27s simulated annealing where random numbers are abundantly used, it would be better to use better designed probability distributions instead of random numbers
    corecore