1,171 research outputs found

    Nash and Wardrop equilibria in aggregative games with coupling constraints

    Full text link
    We consider the framework of aggregative games, in which the cost function of each agent depends on his own strategy and on the average population strategy. As first contribution, we investigate the relations between the concepts of Nash and Wardrop equilibrium. By exploiting a characterization of the two equilibria as solutions of variational inequalities, we bound their distance with a decreasing function of the population size. As second contribution, we propose two decentralized algorithms that converge to such equilibria and are capable of coping with constraints coupling the strategies of different agents. Finally, we study the applications of charging of electric vehicles and of route choice on a road network.Comment: IEEE Trans. on Automatic Control (Accepted without changes). The first three authors contributed equall

    Linear Generalized Nash Equilibrium Problems

    Get PDF
    In der vorliegenden Arbeit werden verallgemeinerte Nash Spiele (LGNEPs) unter Linearitätsannahmen eingeführt und untersucht. Durch Ausnutzung der speziellen Struktur lassen sich theoretische und algorithmische Resultate erzielen, die weit über die Ergebnisse für allgemeine LGNEPs hinausgehen

    A Douglas-Rachford splitting for semi-decentralized equilibrium seeking in generalized aggregative games

    Full text link
    We address the generalized aggregative equilibrium seeking problem for noncooperative agents playing average aggregative games with affine coupling constraints. First, we use operator theory to characterize the generalized aggregative equilibria of the game as the zeros of a monotone set-valued operator. Then, we massage the Douglas-Rachford splitting to solve the monotone inclusion problem and derive a single layer, semi-decentralized algorithm whose global convergence is guaranteed under mild assumptions. The potential of the proposed Douglas-Rachford algorithm is shown on a simplified resource allocation game, where we observe faster convergence with respect to forward-backward algorithms.Comment: arXiv admin note: text overlap with arXiv:1803.1044
    corecore