5 research outputs found

    Kernelization and Parameterized Algorithms for 3-Path Vertex Cover

    Full text link
    A 3-path vertex cover in a graph is a vertex subset CC such that every path of three vertices contains at least one vertex from CC. The parameterized 3-path vertex cover problem asks whether a graph has a 3-path vertex cover of size at most kk. In this paper, we give a kernel of 5k5k vertices and an O(1.7485k)O^*(1.7485^k)-time and polynomial-space algorithm for this problem, both new results improve previous known bounds.Comment: in TAMC 2016, LNCS 9796, 201

    The k-fixed-endpoint path partition problem

    Get PDF
    The Hamiltonian path problem is to determine whether a graph has a Hamiltonian path. This problem is NP-complete in general. The path partition problem is to determine the minimum number of vertex-disjoint paths required to cover a graph. Since this problem is a generalization of the Hamiltonian path problem, it is also NP-complete in general. The k-fixed-endpoint path partition problem is to determine the minimum number of vertex-disjoint paths required to cover a graphG such that each vertex in a set T of k vertices is an endpoint of a path. Since this problem is a generalization of the Hamiltonian path problem and path partition problem, it is also NP-complete in general. For certain classes of graphs, there exist efficient algorithms for the k-fixed-endpoint path partition problem. We consider this problem restricted to trees, threshold graphs, block graphs, and unit interval graphs and show min-max theorems which characterize the k-fixed-endpoint pathpartition number

    On finding the best and worst orientations for the metric dimension

    Get PDF
    The (directed) metric dimension of a digraph D, denoted by MD(D), is the size of a smallest subset S of vertices such that every two vertices of D are distinguished via their distances from the vertices in S. In this paper, we investigate the graph parameters BOMD(G) and WOMD(G) which are respectively the smallest and largest metric dimension over all orientations of G. We show that those parameters are related to several classical notions of graph theory and investigate the complexity of determining those parameters. We show that BOMD(G) = 1 if and only if G is hypotraceable (that is has a path spanning all vertices but one), and deduce that deciding whether BOMD(G) ≤ k is NP-complete for every positive integer k. We also show that WOMD(G) ≥ α(G) − 1, where α(G) is the stability number of G. We then deduce that for every fixed positive integer k, we can decide in polynomial time whether WOMD(G) ≤ k. The most significant results deal with oriented forests. We provide a linear-time algorithm to compute the metric dimension of an oriented forest and a linear-time algorithm that, given a forest F , computes an orientation D − with smallest metric dimension (i.e. such that MD(D −) = BOMD(F)) and an orientation D + with largest metric dimension (i.e. such that MD(D +) = WOMD(F))
    corecore