4,211 research outputs found

    Exact Algorithm for Graph Homomorphism and Locally Injective Graph Homomorphism

    Full text link
    For graphs GG and HH, a homomorphism from GG to HH is a function φ ⁣:V(G)V(H)\varphi \colon V(G) \to V(H), which maps vertices adjacent in GG to adjacent vertices of HH. A homomorphism is locally injective if no two vertices with a common neighbor are mapped to a single vertex in HH. Many cases of graph homomorphism and locally injective graph homomorphism are NP-complete, so there is little hope to design polynomial-time algorithms for them. In this paper we present an algorithm for graph homomorphism and locally injective homomorphism working in time O((b+2)V(G))\mathcal{O}^*((b + 2)^{|V(G)|}), where bb is the bandwidth of the complement of HH

    The Complexity of Surjective Homomorphism Problems -- a Survey

    Get PDF
    We survey known results about the complexity of surjective homomorphism problems, studied in the context of related problems in the literature such as list homomorphism, retraction and compaction. In comparison with these problems, surjective homomorphism problems seem to be harder to classify and we examine especially three concrete problems that have arisen from the literature, two of which remain of open complexity

    On retracts, absolute retracts, and folds in cographs

    Full text link
    Let G and H be two cographs. We show that the problem to determine whether H is a retract of G is NP-complete. We show that this problem is fixed-parameter tractable when parameterized by the size of H. When restricted to the class of threshold graphs or to the class of trivially perfect graphs, the problem becomes tractable in polynomial time. The problem is also soluble when one cograph is given as an induced subgraph of the other. We characterize absolute retracts of cographs.Comment: 15 page

    Constraint Satisfaction with Counting Quantifiers

    Full text link
    We initiate the study of constraint satisfaction problems (CSPs) in the presence of counting quantifiers, which may be seen as variants of CSPs in the mould of quantified CSPs (QCSPs). We show that a single counting quantifier strictly between exists^1:=exists and exists^n:=forall (the domain being of size n) already affords the maximal possible complexity of QCSPs (which have both exists and forall), being Pspace-complete for a suitably chosen template. Next, we focus on the complexity of subsets of counting quantifiers on clique and cycle templates. For cycles we give a full trichotomy -- all such problems are in L, NP-complete or Pspace-complete. For cliques we come close to a similar trichotomy, but one case remains outstanding. Afterwards, we consider the generalisation of CSPs in which we augment the extant quantifier exists^1:=exists with the quantifier exists^j (j not 1). Such a CSP is already NP-hard on non-bipartite graph templates. We explore the situation of this generalised CSP on bipartite templates, giving various conditions for both tractability and hardness -- culminating in a classification theorem for general graphs. Finally, we use counting quantifiers to solve the complexity of a concrete QCSP whose complexity was previously open
    corecore