69 research outputs found

    Parallel Quantum Annealing

    Full text link
    Quantum annealers of D-Wave Systems, Inc., offer an efficient way to compute high quality solutions of NP-hard problems. This is done by mapping a problem onto the physical qubits of the quantum chip, from which a solution is obtained after quantum annealing. However, since the connectivity of the physical qubits on the chip is limited, a minor embedding of the problem structure onto the chip is required. In this process, and especially for smaller problems, many qubits will stay unused. We propose a novel method, called parallel quantum annealing, to make better use of available qubits, wherein either the same or several independent problems are solved in the same annealing cycle of a quantum annealer, assuming enough physical qubits are available to embed more than one problem. Although the individual solution quality may be slightly decreased when solving several problems in parallel (as opposed to solving each problem separately), we demonstrate that our method may give dramatic speed-ups in terms of Time-to-Solution (TTS) for solving instances of the Maximum Clique problem when compared to solving each problem sequentially on the quantum annealer. Additionally, we show that solving a single Maximum Clique problem using parallel quantum annealing reduces the TTS significantly.Comment: 13 pages. v4: format improvement

    Towards Solving the Navier-Stokes Equation on Quantum Computers

    Get PDF
    In this paper, we explore the suitability of upcoming novel computing technologies, in particular adiabatic annealing based quantum computers, to solve fluid dynamics problems that form a critical component of several science and engineering applications. We start with simple flows with well-studied flow properties, and provide a framework to convert such systems to a form amenable for deployment on such quantum annealers. We analyze the solutions obtained both qualitatively and quantitatively as well as the sensitivities of the various solution selection schemes on the obtained solution

    Most Frequent Itemset Optimization

    Full text link
    In this paper we are dealing with the frequent itemset mining. We concentrate on the special case that we only want to identify the most frequent itemset of length N. To do that, we present a pattern on how to consider this search as an optimization problem. First, we extract the frequency of all possible 2-item-sets. Then the optimization problem is to find the N objects, for which the minimal frequency of all containing 2-item-sets is maximal. This combinatorial optimization problem can be solved by any optimization algorithm. We will solve them with Quantum Annealing and QUBO with QbSolv by D-Wave. The advantages of MFIO in comparison to the state-of-the-art-approach are the enormous reduction of time need, reduction of memory need and the omission of a threshold. The disadvantage is that there is no guaranty for accuracy of the result. The evaluation indicates good results

    Comparing Three Generations of D-Wave Quantum Annealers for Minor Embedded Combinatorial Optimization Problems

    Full text link
    Quantum annealing is a novel type of analog computation that aims to use quantum mechanical fluctuations to search for optimal solutions of Ising problems. Quantum annealing in the Transverse Ising model, implemented on D-Wave QPUs, are available as cloud computing resources. In this article we report concise benchmarks across three generations of D-Wave quantum annealers, consisting of four different devices, for the NP-Hard combinatorial optimization problems unweighted maximum clique and unweighted maximum cut on random graphs. The Ising, or equivalently QUBO, formulation of these problems do not require auxiliary variables for order reduction, and their overall structure and weights are not highly complex, which makes these problems simple test cases to understand the sampling capability of current D-Wave quantum annealers. All-to-all minor embeddings of size 5252, with relatively uniform chain lengths, are used for a direct comparison across the Chimera, Pegasus, and Zephyr device topologies. A grid search over annealing times and the minor embedding chain strengths is performed in order to determine the level of reasonable performance for each device and problem type. Experiment metrics that are reported are approximation ratios for non-broken chain samples and chain break proportions. How fairly the quantum annealers sample optimal maximum cliques, for instances which contain multiple maximum cliques, is also quantified using entropy of the measured ground state distributions. The newest generation of quantum annealing hardware, which has a Zephyr hardware connectivity, performed the best overall with respect to approximation ratios and chain break frequencies
    • …
    corecore