2,169 research outputs found

    HIERARCHICAL CLUSTERING USING LEVEL SETS

    Get PDF
    Over the past several decades, clustering algorithms have earned their place as a go-to solution for database mining. This paper introduces a new concept which is used to develop a new recursive version of DBSCAN that can successfully perform hierarchical clustering, called Level- Set Clustering (LSC). A level-set is a subset of points of a data-set whose densities are greater than some threshold, ‘t’. By graphing the size of each level-set against its respective ‘t,’ indents are produced in the line graph which correspond to clusters in the data-set, as the points in a cluster have very similar densities. This new algorithm is able to produce the clustering result with the same O(n log n) time complexity as DBSCAN and OPTICS, while catching clusters the others missed

    Graph Connectivity in Noisy Sparse Subspace Clustering

    Get PDF
    Subspace clustering is the problem of clustering data points into a union of low-dimensional linear/affine subspaces. It is the mathematical abstraction of many important problems in computer vision, image processing and machine learning. A line of recent work (4, 19, 24, 20) provided strong theoretical guarantee for sparse subspace clustering (4), the state-of-the-art algorithm for subspace clustering, on both noiseless and noisy data sets. It was shown that under mild conditions, with high probability no two points from different subspaces are clustered together. Such guarantee, however, is not sufficient for the clustering to be correct, due to the notorious "graph connectivity problem" (15). In this paper, we investigate the graph connectivity problem for noisy sparse subspace clustering and show that a simple post-processing procedure is capable of delivering consistent clustering under certain "general position" or "restricted eigenvalue" assumptions. We also show that our condition is almost tight with adversarial noise perturbation by constructing a counter-example. These results provide the first exact clustering guarantee of noisy SSC for subspaces of dimension greater then 3.Comment: 14 pages. To appear in The 19th International Conference on Artificial Intelligence and Statistics, held at Cadiz, Spain in 201

    Correlation Clustering

    Get PDF
    Knowledge Discovery in Databases (KDD) is the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data. The core step of the KDD process is the application of a Data Mining algorithm in order to produce a particular enumeration of patterns and relationships in large databases. Clustering is one of the major data mining techniques and aims at grouping the data objects into meaningful classes (clusters) such that the similarity of objects within clusters is maximized, and the similarity of objects from different clusters is minimized. This can serve to group customers with similar interests, or to group genes with related functionalities. Currently, a challenge for clustering-techniques are especially high dimensional feature-spaces. Due to modern facilities of data collection, real data sets usually contain many features. These features are often noisy or exhibit correlations among each other. However, since these effects in different parts of the data set are differently relevant, irrelevant features cannot be discarded in advance. The selection of relevant features must therefore be integrated into the data mining technique. Since about 10 years, specialized clustering approaches have been developed to cope with problems in high dimensional data better than classic clustering approaches. Often, however, the different problems of very different nature are not distinguished from one another. A main objective of this thesis is therefore a systematic classification of the diverse approaches developed in recent years according to their task definition, their basic strategy, and their algorithmic approach. We discern as main categories the search for clusters (i) w.r.t. closeness of objects in axis-parallel subspaces, (ii) w.r.t. common behavior (patterns) of objects in axis-parallel subspaces, and (iii) w.r.t. closeness of objects in arbitrarily oriented subspaces (so called correlation cluster). For the third category, the remaining parts of the thesis describe novel approaches. A first approach is the adaptation of density-based clustering to the problem of correlation clustering. The starting point here is the first density-based approach in this field, the algorithm 4C. Subsequently, enhancements and variations of this approach are discussed allowing for a more robust, more efficient, or more effective behavior or even find hierarchies of correlation clusters and the corresponding subspaces. The density-based approach to correlation clustering, however, is fundamentally unable to solve some issues since an analysis of local neighborhoods is required. This is a problem in high dimensional data. Therefore, a novel method is proposed tackling the correlation clustering problem in a global approach. Finally, a method is proposed to derive models for correlation clusters to allow for an interpretation of the clusters and facilitate more thorough analysis in the corresponding domain science. Finally, possible applications of these models are proposed and discussed.Knowledge Discovery in Databases (KDD) ist der Prozess der automatischen Extraktion von Wissen aus großen Datenmengen, das gĂŒltig, bisher unbekannt und potentiell nĂŒtzlich fĂŒr eine gegebene Anwendung ist. Der zentrale Schritt des KDD-Prozesses ist das Anwenden von Data Mining-Techniken, um nĂŒtzliche Beziehungen und ZusammenhĂ€nge in einer aufbereiteten Datenmenge aufzudecken. Eine der wichtigsten Techniken des Data Mining ist die Cluster-Analyse (Clustering). Dabei sollen die Objekte einer Datenbank in Gruppen (Cluster) partitioniert werden, so dass Objekte eines Clusters möglichst Ă€hnlich und Objekte verschiedener Cluster möglichst unĂ€hnlich zu einander sind. Hier können beispielsweise Gruppen von Kunden identifiziert werden, die Ă€hnliche Interessen haben, oder Gruppen von Genen, die Ă€hnliche FunktionalitĂ€ten besitzen. Eine aktuelle Herausforderung fĂŒr Clustering-Verfahren stellen hochdimensionale Feature-RĂ€ume dar. Reale DatensĂ€tze beinhalten dank moderner Verfahren zur Datenerhebung hĂ€ufig sehr viele Merkmale (Features). Teile dieser Merkmale unterliegen oft Rauschen oder AbhĂ€ngigkeiten und können meist nicht im Vorfeld ausgesiebt werden, da diese Effekte in Teilen der Datenbank jeweils unterschiedlich ausgeprĂ€gt sind. Daher muss die Wahl der Features mit dem Data-Mining-Verfahren verknĂŒpft werden. Seit etwa 10 Jahren werden vermehrt spezialisierte Clustering-Verfahren entwickelt, die mit den in hochdimensionalen Feature-RĂ€umen auftretenden Problemen besser umgehen können als klassische Clustering-Verfahren. Hierbei wird aber oftmals nicht zwischen den ihrer Natur nach im Einzelnen sehr unterschiedlichen Problemen unterschieden. Ein Hauptanliegen der Dissertation ist daher eine systematische Einordnung der in den letzten Jahren entwickelten sehr diversen AnsĂ€tze nach den Gesichtspunkten ihrer jeweiligen Problemauffassung, ihrer grundlegenden Lösungsstrategie und ihrer algorithmischen Vorgehensweise. Als Hauptkategorien unterscheiden wir hierbei die Suche nach Clustern (1.) hinsichtlich der NĂ€he von Cluster-Objekten in achsenparallelen UnterrĂ€umen, (2.) hinsichtlich gemeinsamer Verhaltensweisen (Mustern) von Cluster-Objekten in achsenparallelen UnterrĂ€umen und (3.) hinsichtlich der NĂ€he von Cluster-Objekten in beliebig orientierten UnterrĂ€umen (sogenannte Korrelations-Cluster). FĂŒr die dritte Kategorie sollen in den weiteren Teilen der Dissertation innovative LösungsansĂ€tze entwickelt werden. Ein erster Lösungsansatz basiert auf einer Erweiterung des dichte-basierten Clustering auf die Problemstellung des Korrelations-Clustering. Den Ausgangspunkt bildet der erste dichtebasierte Ansatz in diesem Bereich, der Algorithmus 4C. Anschließend werden Erweiterungen und Variationen dieses Ansatzes diskutiert, die robusteres, effizienteres oder effektiveres Verhalten aufweisen oder sogar Hierarchien von Korrelations-Clustern und den entsprechenden UnterrĂ€umen finden. Die dichtebasierten Korrelations-Cluster-Verfahren können allerdings einige Probleme grundsĂ€tzlich nicht lösen, da sie auf der Analyse lokaler Nachbarschaften beruhen. Dies ist in hochdimensionalen Feature-RĂ€umen problematisch. Daher wird eine weitere Neuentwicklung vorgestellt, die das Korrelations-Cluster-Problem mit einer globalen Methode angeht. Schließlich wird eine Methode vorgestellt, die Cluster-Modelle fĂŒr Korrelationscluster ableitet, so dass die gefundenen Cluster interpretiert werden können und tiefergehende Untersuchungen in der jeweiligen Fachdisziplin zielgerichtet möglich sind. Mögliche Anwendungen dieser Modelle werden abschließend vorgestellt und untersucht

    Community Detection in Quantum Complex Networks

    Full text link
    Determining community structure is a central topic in the study of complex networks, be it technological, social, biological or chemical, in static or interacting systems. In this paper, we extend the concept of community detection from classical to quantum systems---a crucial missing component of a theory of complex networks based on quantum mechanics. We demonstrate that certain quantum mechanical effects cannot be captured using current classical complex network tools and provide new methods that overcome these problems. Our approaches are based on defining closeness measures between nodes, and then maximizing modularity with hierarchical clustering. Our closeness functions are based on quantum transport probability and state fidelity, two important quantities in quantum information theory. To illustrate the effectiveness of our approach in detecting community structure in quantum systems, we provide several examples, including a naturally occurring light-harvesting complex, LHCII. The prediction of our simplest algorithm, semiclassical in nature, mostly agrees with a proposed partitioning for the LHCII found in quantum chemistry literature, whereas our fully quantum treatment of the problem uncovers a new, consistent, and appropriately quantum community structure.Comment: 16 pages, 4 figures, 1 tabl
    • 

    corecore