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ABSTRACT 

LEVEL SET CLUSTERING 

 

Over the past several decades, clustering algorithms have earned their place as 

a go-to solution for database mining. This paper introduces a new concept which is 

used to develop a new recursive version of DBSCAN that can successfully perform 

hierarchical clustering, called Level- Set Clustering (LSC). A level-set is a subset of 

points of a data-set whose densities are greater than some threshold, ‘t’. By graphing 

the size of each level-set against its respective ‘t,’ indents are produced in the line graph 

which correspond to clusters in the data-set, as the points in a cluster have very similar 

densities. This new algorithm is able to produce the clustering result  with the same O(n 

log n) time complexity as DBSCAN and OPTICS, while catching clusters the others 

missed.  
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1.0 INTRODUCTION 

In the Age of Information, the world faces an increasing need for even more 

efficient and more effective data processing methods. Because of this, clustering finds 

itself useful in many other fields beyond the realm of Computer Science. 

 

As defined in the abstract, a level-set is a subset of points of a data-set whose 

densities are greater than some threshold. Although the notion of a level-set is not new, 

it has seemingly only been used as a part of theorems and has yet to be considered as 

a key component in actual algorithm. Graphing the size of the level-set against its 

respective threshold gives a glimpse into the underlying cluster tree. Steep drops 

appear in this downward line graph, representing a large number of points with similar 

densities which indicates the presence of a cluster. 

 

Given the nature of level-sets, it is more than fitting to pair this up with DBSCAN, 

a density-based clustering algorithm, which performs the initial clustering on the data-

set. Looking at each of the resultant clusters individually, LSC finds their sub-clusters by 

graphing the level-sets and clustering again at the next major drop, pruning everything 

less dense than it. The algorithm then continues in this recursive divide and conquer 

fashion, clustering each level and searching for more subclusters.  
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2.0 RELATED WORK 

Because of the importance of being able to cope with large datasets, the 

academic world of Computer Science has been working hard to develop scalable 

algorithms to help solve this important problem. 

 

2.1 Level-Sets and Cluster Trees 

 

Figure 1: The density graph of a 1 dimensional data set (black line) with its  
cluster tree superimposed on it (dark blue dotted line)  
(Kpotufe, Samory & von Luxburg, Ulrike 2011) 
 

The original inspiration for the work done in this project was the paper entitled 

“Pruning Nearest Neighbor” (Kpotufe, Samory & von Luxburg, Ulrike 2011). That paper 

expanded upon the work by the same professor published 2 years earlier, “Optimal 

construction of k-nearest neighbor graphs for identifying noisy clusters” (Maier, M., 

Hein, M., & von Luxburg, U 2009) This preliminary paper is an investigation into the 

merits of clustering algorithms that use different neighborhood graphs, namely ones that 

use symmetric k-nearest neighbor or mutual k-nearest neighbor. The authors found the 

bounds on the probability for the successful identification of clusters. They apply graph 
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theory to the realm of clustering to help uncover cluster trees in data sets. Using the 

notion of k-NN graphs and t-level-sets, a data set can be effectively modeled and the 

optimal clustering result can be found.  

 

The authors of the subsequent paper go further to develop a method for pruning 

fake branches in these cluster trees (Kpotufe, Samory & von Luxburg, Ulrike 2011). One 

of the challenges that the authors faced was inspecting a level-set that pruned the data 

in such a way, that it appeared that a larger cluster had split into two. Instead the data 

points that once connected these two sub-clusters happened to be just below the 

threshold leading to a split that shouldn’t have happened.. Their method checks a less 

dense level-set to see if the split is legitimate or not.They were able to carefully walk the 

line of pruning too aggressively and pruning too conservatively, successfully removing 

all spurious cluster while leaving the true cluster tree intact. 

 

The paper entitled, "Rates of convergence for the cluster tree" outlines a 

statistical approach to estimating cluster trees by performing a convergence analysis on 

Wishart's Scheme from 1969 (Chaudhuri, K. &Dasgupta, S 2010). Earlier efforts 

provided weak consistency for single-linkage clustering algorithms like Wishart's 

Scheme, however, this is the first to properly prove it.. Like the two paper's above, this 

one focuses on the clusters generated from k-nearest neighbor graphs. 

 

It was these papers that introduced me to the notion of t-level-sets.This inspired 

the idea to graph the sizes of these level-sets on a two dimensional line graph, with 
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increasing density on the horizontal axis and the level-set size at that density on the 

vertical axis. The line produced works its way from the upper left corner of the graph 

(where every single point has a density of 0 or greater) to the lower right corner of the 

graph (where the densest point is the only point of that density). What is interesting 

about this graph is that it takes sudden dips when there are a lot of points that have the 

same density, which is indicative of a cluster. 

 

2.2 Density-Based Clustering 

These graphs felt similar to the reachability plots from the OPTICS algorithm, 

introduced in the paper "OPTICS: Ordering Points To Identify the Clustering Structure". 

OPTICS is an interesting derivation of the clustering algorithm DBSCAN (Mihael 

Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Jörg Sander 1999). The authors 

change the portion of DBSCAN that gives a data point its cluster label and instead it 

writes out that point to a file. Each point is also given a new attribute called it’s 

reachability. The reachability of a point is determined while appending new neighbors 

too the queue during a region-query (using a spatial indexing structure, such as R-Tree, 

to return the list of neighbors within eps from a point) (Beckmann N., Kriegel H.-P., 

Schneider R., Seeger B 1990). The reachability of a neighbor is defined as the distance 

between the neighbor and the point being queried or the distance to the k-nearest 

neighbor of the neighbor, whichever is larger. Neighbors are also removed from the 

queue, lowest reachability first. The result is the following graph. 
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Figure 2: reachability plot produced by the OPTICS algorithm  
(Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Jörg Sander 1999) 
 

Valleys mark the occurrence of a cluster, and deeper / narrower valleys within 

shallower / wider valley indicate cluster within clusters. There is a standalone portion of 

the OPTICS algorithm that is able to extract these clusters from the graph. Traversing 

from left to right it uses heuristics to match “steep down areas” to “steep up areas,” 

successfully identifying clusters. OPTICS will be my measure for comparison in terms of 

quality of results and time complexity as it is also a hierarchical rendition of DBSCAN. 

 

As OPTICS was based on DBSCAN, it was useful to dig deeper into the paper 

that introduced and outlined it, "A density-based algorithm for discovering clusters in 

large spatial databases with noise" (Martin Ester, Hans-Peter Kriegel, Jörg Sander, 

Xiaowei Xu 1996). DBSCAN takes the two parameters 'MinPts' and 'Eps' which refer to 

how many neighbors a point needs in order to be considered a "core point" and how 

close a pair of points need to be to each other in order to be considered neighbors, 

respectively. The algorithm then leap-frogs across core points that are neighbors of 

each others to identify clusters. The problem that this algorithm faces is picking 
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appropriate input values for its parameters which can cause it to miss clusters that are 

small or to identify spurious clusters. Furthermore it is a partitional algorithm, incapable 

of recognizing sub-clusters. 

 

2.3 Conclusion 

Given the amount of work being done in the field of clustering, cluster trees, and 

machine learning as a whole, finding the solutions to these problems is proving quite 

challenging and critical. The industry is always looking for more robust and faster ways 

to handle its large amounts of data. 
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3.0 Graphing Level- Sets 

 As mentioned earlier, research into statistical graph theory papers introduced the 

notion of a level-set. While the simple definition of this special subset has seemingly 

never been a focal point in a clustering algorithm, the proper application of the concept 

will prove to be powerful.  

 

3.1 Analyzing the graph 

 To visualize the capabilities of the information contained in the level-set sizes, we 

begin by graphing the size of level-set on the vertical axis against its corresponding 

threshold on the horizontal axis. As explained above, the level-set graph experiences 

steep dips when there are a lot of points of the same, or at least similar, densities in the 

data set. These dips are separated by flatter stretches that continue to the right until the 

next collection of even denser points cause another dip. All the noise in the graph 

causes a smaller series of decreases in the graph on the left side (less dense side). 

Given the high variance in possible density values for noise points, it does not amass as 

a significant dip helping the experimenter ignore them easily.  

 

 However, what has show to be problematic is a large variance in the densities for 

clusters themselves. A dip still exists, but it will not be nearly as sharp, and becomes 

harder to detect.  
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3.2 Kernel Density Estimators 

 

 Figure 3: the level-set graph (upper right) and it’s kernel-density estimated  
 derivative (lower right) for the subset (left) 

 

It is better to represent the data as a ‘derivative’ of the current graph. Kernel 

density estimators from statistics are designed exactly for this purpose. First all the 

points from the data set are projected onto the horizontal (density) axis of the level set 

line graph. This means that they are ordered in increasing density, each point sitting on 

the x-value that corresponds to its density which is also the the level-set threshold that 

would cause it to be pruned. If this were to be visualized, the axis would have bunches 

of points directly underneath the dips. Second, a kernel density estimator is run 

horizontally across the data. This produces peaks where the dips occurred with wide 

valleys in between them.  
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3.3 Identifying Peaks 

 

 

 Figure 4: Here the cluster produces a more jagged level-set graph 
 

Visually, the peaks are seemingly easier to work with. The varying degree of 

similar densities affect the steepness of the dips more than the height of the peaks. The 

effect on the peak is a larger taper at its base, as well as jaggedness in the line. The 

valleys on both sides of  the peak would need to be identified in order to successfully 

determine the range of densities for the cluster. The peak itself marks the most common 

density held by the points within the cluster, but there is variance in the densities of the 

points of the cluster. The points towards the edges of the cluster as well as some of the 

points within the clusters will not be as dense. These points will be missed if too dense 

of a point is chosen as the start of the peak. Choosing a point that is not dense enough 

will cause too many of the surrounding points to be chosen as well. 
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Programmatically, this jaggedness proved problematic in choosing 

valleys. Without more expensive methods of developing less jagged peaks, like the 

Gaussian kernel density estimator, it is impossible for the level-set graph to work. 

Instead, we turn to the projected points from section 3.3, lying on the density axis 

bunched up underneath the peaks which superimpose on the dips. The valleys that 

need to be identified are essentially the edges of a one dimensional cluster. Even when 

successfully identified, this method would not be able to handle cases such as the 

multiple clusters of the same density, as they would all be represented as the same 

peak. There needs to be some level of integration with existing clustering methods in 

order to handle such scenarios. 

 

The algorithm outlined on the next page shows a rendition of the graph 

generation that can be used as pruning technique for a recursive partitional clustering 

framework which is outlined in section 5.0.  
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4.0 Level-Set Algorithm 

 
Prune_base_cluster( data ) 

1 projection = project_densities( data ) 

2 clusters = DBSCAN( projection ) 

3 cluster = Find_Least_Dense_Cluster( cluster ) 

4 valley = Find_Densest_Point( cluster ) 

5 return Prune_Everything_Less_Dense_Than( data, valley ) 

 
The pseudo code above shows the general steps taken by the level-set algorithm 

used by the general clustering algorithm. It receives a set of data for which it will remove 

the least dense cluster of points that appear in the density graph.  

 

The algorithm begins by representing the data as having 1 dimension, that being 

each point’s density. It is assumes that the densities for each point have already been 

calculated beforehand, which will be discussed in section 5. Next the algorithm runs the 

one dimensional projection through DBSCAN to find the peaks described in section 3. 

This algorithm is only interested in the least dense cluster, as it is removing it. In order 

to do this, it needs the densest point in the least dense cluster which is essentially the 

valley to the right of the left-most peak. 

 

Once found, all the points that are less dense than this valley are removed. This 

subset is then returned so that it can then be clustered to find the denser sub clusters. 

  



18 

 
Prune_base_cluster( data ) 

1 qsort( data ) 

2 left_i = 0, right_i = 0, num_in_range = 0, is_first = true 

3 first_core_point = -1, last_core_point = -1, valley = -1 

4 w = (data[|data|-1]->density - data[0]->density) * MINPTS *  

2 / ( |data| * sqrt(pi) ) 

5 for i = 0, |data| -1 do  

6  if data[i]->density == 0 then continue 

7  while right_i < |data| && data[right_i]->density <  

    (data[i]->density + w) do 

8   num_in_range++ 

9   right_i++ 

10  while left_i < |data| && data[left_i]->density <  

    (data[i]->density - w) do 

11   num_in_range— 

12   left_i++ 

13  if num_in_range > MINPTS then  

14   last_core_point = i 

15   If is_first then 

16    is_first = false 

17    first_core_point = i 

18  elseif last_core_point != -1 && (data[i]->density –  

19    data[last_core_point]->density) > w then  
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20   if last_core_point-first_core_point > MINPTS then 

21    return prune( data, last_core_point ) 

22   last_core_point = -1 

23   is_first = true 

24 return {} 

 
The pseudo code above shows the true steps taken by the level-set algorithm. It 

sorts the data-set in order of ascending density. Next, lines 5-12 perform a uniform 

kernel density estimator to determine if each point is a DBSCAN core-point. Line 4 is a 

formula for epsilon that is explained in further detail in section 5. The epsilon generated 

is used a kernel for the estimator, which means that all other points that fall into range 

are the neighbors. Lines 13-14 mark down if the current point is a core point. If the 

current point is not a core point and it is farther than epsilon from the last core point, 

then the last core point marks the end of a cluster, as long as there were minpts points 

in that cluster (Lines 18-21). If there were not minpts points, then the variables are reset 

and the estimator continues moving (Lines 22-23).  

 

This approaches stops as soon as the first cluster is discovered and prunes on 

the last core point that was seen. Since the estimator is moving in ascending density, 

this will be the densest point of that least dense cluster. In terms of time complexity, it is 

limited by qsort which is O(n log n). In the simplified version on the previous page, the 

supposed call to DBSCAN would have also limited the complexity to O(n log n).  
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5.0 CLUSTERING ALGORITHM 

 
Main(data) 

1 findDensities(data) 

2 clusters = DBSCAN( data ) 

3 for each c in clusters do 

4  Recursive_Cluster( c ) 

5 return clusters 

 
Recursive_Cluster( parent, eps )  

1 pruned_points = Prune_base_cluster( parent ) 

2 if  |pruned_points| > MINPTS  then 

3  parent->children = DBSCAN( pruned_points) 

4  for each c in parent->children do 

5   Recursive_Cluster( c )  

______________________________________________________________________ 

calculate_epsilon(data)  

1 volume = 1;     dim = |data->dimensions|; 

2 for each d in data ->dimensions do 

3  volume *= (data[d]->max - data[d]->min) 

4 return ((volume * MINPTS * 2 * Γ(dim/2 - 1))/ 

  ( |data| * sqrt(PI^ dim))^(1/ dim) 
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DBSCAN(data) 

1 eps = calculate_epsilon(data) 

2 for each point in data do  point->processed = false 

3 clusters = {} 

4 for each point in data do 

5  if point->processed then     continue 

6  point->processed = true 

7  queue = findNeighbors(data,point,eps) 

8  if |queue| < MINPTS then     continue 

9  current_cluster = {} 

10  clusters.add(current_cluster) 

11  current_cluster.add(point) 

12  while |queue| > 0 do 

13   p = queue.pop() 

14   if p->processed then     continue 

15   p>processed = true 

16   new_neighbors = findNeighbors(data,p,eps) 

17   if |new_neighbors| >= MINPTS then 

18    queue = queue + new_neighbors 

19    current_cluster.add(p) 

20 return clusters 

 
(Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu 1996)  
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5.1 Integrating DBSCAN 

The above pseudo-code illustrates the full clustering algorithm that makes use of 

the level-set graphing code. The core clustering technique used is DBSCAN, which is 

the last function shown. LSC calls DBSCAN to perform an initial clustering and then 

recursively calls DBSCAN on the individual clusters produced. Each iteration, the level-

set code is used to prune the base / parent cluster out of the subset to make it easier to 

find the denser children clusters. 

𝜀 = �𝑉𝑜𝑙 × 2 ×𝑚𝑖𝑛𝑝𝑡𝑠 × Γ(d
2 + 1)

𝑛 × √𝜋𝑑

𝑑

 

 Figure 5: The formula for calculating epsilon, from the OPTICS paper. 
 (Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Jörg Sander 1999) 
 

 In addition to pruning every iteration, the epsilon parameter is modified each time 

as well. Traditionally DBSCAN requires the user to enter epsilon as one of its input 

parameters. LSC makes use of the formula suggested in the OPTICS paper (Mihael 

Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Jörg Sander 1999), to better tailor 

DBSCAN to the next iteration. In the figure above: Vol is the volume occupied by the 

data set, d is the number of dimensions, n is the number of points, minpts is the input 

parameter to the algorithms, and Γ is the gamma function. In the pseudo code, this 

formula manifests itself as the function 'calculate_epsilon().' It requires knowing the 

bounds of the data set, which requires finding the maximum and minimum attribute 

value for each dimension, in order to produce the volume of the sample space. This 

linear operation (shown in simplified on line 2-3) entails making a full pass through the 

data-set, or subset, that is about to be clustered. However, the ability to chose a proper 
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epsilon has proven itself a necessary expense, as will be further explained in the 

evaluation. 

 

Figure 6: an example of DBSCAN marking 2 separate subclusters as a single  
sub-cluster, due to their proximity. 
 

Furthermore, this was found to be especially effective as the epsilon that worked 

at the base iteration was far too large at denser levels. Before adding this step, the 

subsequent iterations of DBSCAN had the problem of marking all of the smaller higher 

density clusters as a single cluster as the gap between these smaller clusters was not 

large enough, as is illustrated above.   
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5.2 Finding Densities & Spatial Indexing 

 
findDensity(point,data) 

1 neighbors = findNeighbors(data,p,eps) 

2 if |neighbors| < MINPTS then 

3  return 0 

4 avg_dist = 0 

5 for each neighbor in neighbors 

6  avg_dist += dist(neighbor,p) 

7 return avg_dist / MINPTS 

 
 In order for the level-set graph to be made, the density of each point must be 

known. Traditionally calculating can be an expensive procedure, in the realm of O(n^2). 

Since the data was already in a spatial indexing structure, the density values used here 

are generated by performing the same region queries and then calculating the density 

amongst the neighbors returned. Just like for DBSCAN, each region query is O(log(n)), 

making the whole operation O(n*log(n)).  

 

 Densities are not recalculated every iteration as that would require removing all 

the points that have been pruned from the spatial indexing structure as the recursion 

gets deeper and then re-inserting them when it comes time to move onto another 

branch. Although it may be interesting to explore what effect this would have on each 

recreation of the level-set graph, it was assumed to be unnecessary given how effective 

the algorithm proved itself to be without performing these extra steps. 
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 This findDensity() function actually occurs as part of the findNeighbor() during the 

first clustering of the data (line 3 of main). Performing this separately as indicated in the 

pseudo code, would lead to an additional ‘n’ calls to findNeighbor(). The result of 

findDensity() is only used by findLevelSets() which is only called during the recursion.  

 

5.3 Higher Dimensionality 

LSC as it stands is also capable of clustering high-dimensional data, given the 

proper distance functions and spatial indexing structure. Subspace clustering 

techniques were explored as an alternative to this method to see if better results could 

be achieved. The subspace method investigated was the SUBCLU algorithm, which 

was also developed by the OPTICS authors. 

 

SUBCLU clusters high dimensional data by clustering on the individual 

dimensions and then combining the dimensions in an apriori-style fashion and clustering 

within those subspaces. Pairs of dimensions are combined if they only differ in one 

attribute and they are clustered using a cluster found in the previous iteration as the 

data-set to be traversed to pruned the number of points to be considered in this 

iteration. 

 

Originally SUBCLU calls DBSCAN every iteration. Here, it would have called 

LSC every iteration instead. The only issue that arises is the combination of subspace 

clustering and non-partitional clustering. A hierarchical algorithm like the one outlined by 
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this paper finds a cluster tree with in the subspace defined by the attributes from the 

data. A blind incorporation of a hierarchical algorithm into a subspace clustering would 

not only cause additional runs due to more clusters per iteration being found (clusters 

within clusters), but it may lead to entire branches that might not be meaningful. Any 

such branches that would be meaningful, would more than likely be rediscovered in 

another branch of the tree. Because of this, redundancy checks would be required to 

see if any of the clusters produced from an iteration already exist from iterations of the 

same subspace.  

 

Because of the above, a more intuitive combination of the two algorithms would 

be required to not lose the hierarchical information gained from a single iteration. Such 

information would essentially be ignored. The authors of OPTICS and SUBCLU went on 

to develop two other algorithms, HiSC and DiSH (an improvement upon HiSC that has 

post-processing capable of support more complex hierarchies). Both use derivations of 

OPTICS algorithm, and neither use the apriori-style combinations of subspaces from 

SUBCLU. They instead weight the subspace occupied by each point based upon the 

neighbors they have in each respective dimension. Such an endeavor is beyond the 

scope of this project. 

 

5.4 Analysis 

This algorithm definitely favors data set that have a shallow underlying cluster 

tree, which would help split up the data for all of the subsequent runs, each recursive 

iteration running through smaller amounts of data. Given this fact it could be argued that 
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the worst case scenario for this algorithm would be one that results in the level-set 

pruning to prune only minpts points each iteration causing DBSCAN to potentially be 

called n/minpts times.  

 

In order for the above to happen, the data-set would have to have a series of 

sub-clusters of min pts whose differences in densities are large enough for the formula-

derived epsilon. A data set that could produce such a phenonmena is a series of rings, 

with enough spacing between each inner and outer ring for epsilon to mark them 

separately. Such a specific edge case like this seems extremely unlikely.  

 

A more common edge case is the scenario where a cluster has a sub-cluster 

whose density is similar enough that its peak overlaps with the peak of the base cluster. 

This will cause the clustering of the level-set graph to identify the two peaks as one.  
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6.0 EVALUATION 

 In order to properly compare the run-time and clustering result of LSC, it has 

been integrated into the ELKI framework. ELKI (Environment for Developing KDD-

Applications Supported by Index-Structures) is an open-source software project 

produced by the German University, Ludwig-Maximillians-Universitat Munche. This 

framework contains implementations of many different clustering algorithms as well as 

the accelerated spatial indexing structures used by algorithms such as DBSCAN. LSC 

was re-coded and added into the framework to provide as fair of a comparison as 

possible, by using the same databases, indexing structures, programming language, 

and abstraction overhead. For the multiple recursive iterations of DBSCAN, the actual 

DBSCAN code in the framework is called. 

 

6.1 Other Algorithms 

 LSC will be compared against DBSCAN, OPTICS, and SUBCLU. As DBSCAN is 

not hierarchical, comparing against this algorithm is merely to show how much the run-

time is increased by the additional iterations. DBSCAN should be just as fast as the 

base iteration. OPTICS is also DBSCAN based. Unlike DBSCAN, it produces a 

hierarchical clustering by causing a second pass through the entire data-set. LSC 

causes additional passes on subsets of the data, so the comparison against OPTICS 

will be for run-time as well as quality. Third, is SUBCLU which also calls DBSCAN 

multiple times for various subspaces.  
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6.2 Comparing Run-Time: 

 

 

 

 This graph shows run-times for the algorithms on synthetic 2D data sets. The 

smallest is approximately 2,000 and the largest is 20,000. It illustrates that LSC scales 

at about the same rate as DBSCAN, with minimal overhead.  

 

 During the original evaluation, DBSCAN performed slightly worse than LSC. After 

investigation, it became apparent that the reason was the chosen epsilon value. Epsilon 

was chosen to be 50 (where the range of values in both dimensions was 1000) as it 

appeared to successfully identify all the clusters. The formula for epsilon used by LSC 

often chose much lower values for epsilon which would result in the regionQuery() to 

return a smaller neighborhood of points. For the sake of fair comparison, DBSCAN run 

again with these values from the formula. On a similar note, SUBLCLU time complexity 

was almost quadratic before it began using this modified DBSCAN. Before it even 
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begins its apriori style combining of subspaces, SUBCLU must first perform a full 

unpruned run of DBSCAN for each dimension (which is 2 in this case). This drives up its 

run-time as is shown in the graph. 

 

 OPTICSXi originally scaled worse than SUBCLU (denoted in the chart as 

OPTICSXi-infinity) until it too was fed the epsilon value from the LSC epsilon calculator. 

If no epsilon is specified the default behavior is to use an epsilon of infinity which 

causes each region query to return every other point in the data as a neighbor. OPTICS 

does this because it only looks at the closest ‘minpts’ neighbors, thus leaving epsilon as 

infinity guarantees that no point will be accidentally pruned. This essentially causes its 

time complexity to be O(n^2) instead of O(n log n) which defeats the purpose of using 

an accelerated indexing structure. In the paper, the authors stated that the run-time was 

approximately 1.6 times slower than DBSCAN (Mihael Ankerst, Markus M. Breunig, 

Hans-Peter Kriegel, Jörg Sander 1999). 

 

6.3 Cluster Quality 

 LSC was able to discover the hierarchies in the datasets with relative ease. It 

occasionally incurred an additional iteration when it shouldn't have if there was enough 

variance in the density to cause minor valley on the right slope of a peak. This causes a 

handful of small spurious sub clusters to be wrongfully identified. OPTICSXi produced 

similar such artifacts, dues to minor valleys that satisfied their thresholds.  

 



31 

 In addition, OPTICSXi seemed to miss entire base clusters marking them as 

noise, regardless of whether or not the algorithm received a value for epsilon. However, 

the reachability plot does have apparent valleys that did not receive a cluster. This leads 

this author to believe that this rendition of OPTICS may still be a work in progress, as 

the ELKI framework is currently only version 0.5. Moreover, all the valleys that didn't get 

marked as clusters did have a shallow right edge which may have failed to be caught by 

the threshold used by its "Steep Down Area" heuristic. Lowering the threshold from the 

recommended 9% to 1% did lead to the other clusters to be found, but also caused an 

extremely large number of intermediary sub-clusters to be found.  

 

 Interestingly enough, when using a real dataset, as opposed to the 2 dimensional 

synthetic datasets that were generated for the run-time comparison, OPTICS performed 

much better since the valleys in the reachability plot that it generated were much 

steeper. It is not clear what is special about the synthetic data that leads it to generate 

unfavorable reachability. Either way, this marks another weakness for OPTICS as well 

as any other algorithms that make use of the reachability plot. 

 

 When it comes to higher dimensionality, LSC is only as good as its definition of 

density, distance, and the underlying algorithm that is recursively called. Since LSC 

here uses DBSCAN for clustering, it's ability to cope with the curse of dimensionality is 

entirely dependent on whether or not the attributes of the given data-set can be 

effectively compared with the Euclidean distance metric. 
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6.4 Memory 

 Given the fact that a framework with so many other clustering techniques was 

used as the test bench, it was anticipated to compare against more algorithms then 

what is presented here. Unfortunately, it appears that the framework (in its current alpha 

state) is not ready to handle data-sets that have thousands of points as a number of the 

other algorithms run out of heap space. Regardless, the fact that algorithms like 

DBSCAN and OPTICS were able to run and the others weren't, indicates their higher 

space complexity. Included in these other algorithms are the subspace successors to 

OPTICS, HiSC and DiSH. 

 

 The space requirements of LSC are trumped by the space requirements of 

DBSCAN, which is quadratic thanks to the distance matrix requiring O((𝑛2 − 𝑛) / 2) 

entries. LSC adds the need to store the density value for each point as well as an array 

that is the size of the level-set in question for the kernel density estimator graph. 

OPTICS and SUBCLU only add a handful of entities of size, also being held back from 

being more space-efficient by this distance matrix.  



33 

7.0 CONCLUSIONS & FUTURE WORK 

Level Set Clustering proved capable not only of successfully performing a 

hierarchical clustering at speeds comparable to existing methods, but was able to find 

clusters that those existing methods could not. 

 

There is a lot of opportunity for future work from the algorithm developed in this 

paper. The level-set information and graphing technique is versatile and modular 

enough to be used with and within other clustering algorithms. LSC is not specific to 

DBSCAN and any partitional clustering algorithm can be used in its place. DBSCAN 

was chosen because its biggest issue is clusters of varying densities, but this algorithm 

removed that problem from the picture. The framework itself could be completely 

reversed, performing the level-set generation first and then perform partitional clustering 

at each of major peaks. The only additional challenge going that direction is that there is 

no immediate mapping from parent clusters to children clusters. Some form of post-

processing would be required to stitch them all together, and it would technically be 

possible to receive clusters that overlap.  

 

Different heuristics of peak identification and different methods of peak 

generation can be easily swapped in. The current methods were chosen for speed, as 

they are called every iteration, but other possibilities can be explored. It may also be 

possible to to gather sufficient information from the original level-set graph, removing 

the need for peak generation.  
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