4,030 research outputs found

    Optimal fluctuations and the control of chaos.

    Get PDF
    The energy-optimal migration of a chaotic oscillator from one attractor to another coexisting attractor is investigated via an analogy between the Hamiltonian theory of fluctuations and Hamiltonian formulation of the control problem. We demonstrate both on physical grounds and rigorously that the Wentzel-Freidlin Hamiltonian arising in the analysis of fluctuations is equivalent to Pontryagin's Hamiltonian in the control problem with an additive linear unrestricted control. The deterministic optimal control function is identied with the optimal fluctuational force. Numerical and analogue experiments undertaken to verify these ideas demonstrate that, in the limit of small noise intensity, fluctuational escape from the chaotic attractor occurs via a unique (optimal) path corresponding to a unique (optimal) fluctuational force. Initial conditions on the chaotic attractor are identified. The solution of the boundary value control problem for the Pontryagin Hamiltonian is found numerically. It is shown that this solution is approximated very accurately by the optimal fluctuational force found using statistical analysis of the escape trajectories. A second series of numerical experiments on the deterministic system (i.e. in the absence of noise) show that a control function of precisely the same shape and magnitude is indeed able to instigate escape. It is demonstrated that this control function minimizes the cost functional and the corresponding energy is found to be smaller than that obtained with some earlier adaptive control algorithms

    The hidden subgroup problem and quantum computation using group representations

    Get PDF
    The hidden subgroup problem is the foundation of many quantum algorithms. An efficient solution is known for the problem over abelian groups, employed by both Simon's algorithm and Shor's factoring and discrete log algorithms. The nonabelian case, however, remains open; an efficient solution would give rise to an efficient quantum algorithm for graph isomorphism. We fully analyze a natural generalization of the algorithm for the abelian case to the nonabelian case and show that the algorithm determines the normal core of a hidden subgroup: in particular, normal subgroups can be determined. We show, however, that this immediate generalization of the abelian algorithm does not efficiently solve graph isomorphism

    Hidden structure in the randomness of the prime number sequence?

    Full text link
    We report a rigorous theory to show the origin of the unexpected periodic behavior seen in the consecutive differences between prime numbers. We also check numerically our findings to ensure that they hold for finite sequences of primes, that would eventually appear in applications. Finally, our theory allows us to link with three different but important topics: the Hardy-Littlewood conjecture, the statistical mechanics of spin systems, and the celebrated Sierpinski fractal.Comment: 13 pages, 5 figures. New section establishing connection with the Hardy-Littlewood theory. Published in the journal where the solved problem was first describe
    • …
    corecore