5 research outputs found

    Finding all Convex Cuts of a Plane Graph in Cubic Time

    Get PDF

    A Comparison of Local Search Methods for the Multicriteria Police Districting Problem on Graph

    Get PDF
    In the current economic climate, law enforcement agencies are facing resource shortages. The effective and efficient use of scarce resources is therefore of the utmost importance to provide a high standard public safety service. Optimization models specifically tailored to the necessity of police agencies can help to ameliorate their use. The Multicriteria Police Districting Problem (MC-PDP) on a graph concerns the definition of sound patrolling sectors in a police district. The objective of this problem is to partition a graph into convex and continuous subsets, while ensuring efficiency and workload balance among the subsets. The model was originally formulated in collaboration with the Spanish National Police Corps. We propose for its solution three local search algorithms: a Simple Hill Climbing, a Steepest Descent Hill Climbing, and a Tabu Search. To improve their diversification capabilities, all the algorithms implement a multistart procedure, initialized by randomized greedy solutions. The algorithms are empirically tested on a case study on the Central District of Madrid. Our experiments show that the solutions identified by the novel Tabu Search outperform the other algorithms. Finally, research guidelines for future developments on the MC-PDP are given

    Finding all Convex Cuts of a Plane Graph in Polynomial Time

    Full text link
    Convexity is a notion that has been defined for subsets of \RR^n and for subsets of general graphs. A convex cut of a graph G=(V,E)G=(V, E) is a 22-partition V1∪˙V2=VV_1 \dot{\cup} V_2=V such that both V1V_1 and V2V_2 are convex, \ie shortest paths between vertices in ViV_i never leave ViV_i, i∈{1,2}i \in \{1, 2\}. Finding convex cuts is NP\mathcal{NP}-hard for general graphs. To characterize convex cuts, we employ the Djokovic relation, a reflexive and symmetric relation on the edges of a graph that is based on shortest paths between the edges' end vertices. It is known for a long time that, if GG is bipartite and the Djokovic relation is transitive on GG, \ie GG is a partial cube, then the cut-sets of GG's convex cuts are precisely the equivalence classes of the Djokovic relation. In particular, any edge of GG is contained in the cut-set of exactly one convex cut. We first characterize a class of plane graphs that we call {\em well-arranged}. These graphs are not necessarily partial cubes, but any edge of a well-arranged graph is contained in the cut-set(s) of at least one convex cut. We also present an algorithm that uses the Djokovic relation for computing all convex cuts of a (not necessarily plane) bipartite graph in \bigO(|E|^3) time. Specifically, a cut-set is the cut-set of a convex cut if and only if the Djokovic relation holds for any pair of edges in the cut-set. We then characterize the cut-sets of the convex cuts of a general graph HH using two binary relations on edges: (i) the Djokovic relation on the edges of a subdivision of HH, where any edge of HH is subdivided into exactly two edges and (ii) a relation on the edges of HH itself that is not the Djokovic relation. Finally, we use this characterization to present the first algorithm for finding all convex cuts of a plane graph in polynomial time.Comment: 23 pages. Submitted to Journal of Discrete Algorithms (JDA
    corecore