8,442 research outputs found

    Finding Action Tubes with a Sparse-to-Dense Framework

    Full text link
    The task of spatial-temporal action detection has attracted increasing attention among researchers. Existing dominant methods solve this problem by relying on short-term information and dense serial-wise detection on each individual frames or clips. Despite their effectiveness, these methods showed inadequate use of long-term information and are prone to inefficiency. In this paper, we propose for the first time, an efficient framework that generates action tube proposals from video streams with a single forward pass in a sparse-to-dense manner. There are two key characteristics in this framework: (1) Both long-term and short-term sampled information are explicitly utilized in our spatiotemporal network, (2) A new dynamic feature sampling module (DTS) is designed to effectively approximate the tube output while keeping the system tractable. We evaluate the efficacy of our model on the UCF101-24, JHMDB-21 and UCFSports benchmark datasets, achieving promising results that are competitive to state-of-the-art methods. The proposed sparse-to-dense strategy rendered our framework about 7.6 times more efficient than the nearest competitor.Comment: 5 figures; AAAI 202

    TraMNet - Transition Matrix Network for Efficient Action Tube Proposals

    Full text link
    Current state-of-the-art methods solve spatiotemporal action localisation by extending 2D anchors to 3D-cuboid proposals on stacks of frames, to generate sets of temporally connected bounding boxes called \textit{action micro-tubes}. However, they fail to consider that the underlying anchor proposal hypotheses should also move (transition) from frame to frame, as the actor or the camera does. Assuming we evaluate nn 2D anchors in each frame, then the number of possible transitions from each 2D anchor to the next, for a sequence of ff consecutive frames, is in the order of O(nf)O(n^f), expensive even for small values of ff. To avoid this problem, we introduce a Transition-Matrix-based Network (TraMNet) which relies on computing transition probabilities between anchor proposals while maximising their overlap with ground truth bounding boxes across frames, and enforcing sparsity via a transition threshold. As the resulting transition matrix is sparse and stochastic, this reduces the proposal hypothesis search space from O(nf)O(n^f) to the cardinality of the thresholded matrix. At training time, transitions are specific to cell locations of the feature maps, so that a sparse (efficient) transition matrix is used to train the network. At test time, a denser transition matrix can be obtained either by decreasing the threshold or by adding to it all the relative transitions originating from any cell location, allowing the network to handle transitions in the test data that might not have been present in the training data, and making detection translation-invariant. Finally, we show that our network can handle sparse annotations such as those available in the DALY dataset. We report extensive experiments on the DALY, UCF101-24 and Transformed-UCF101-24 datasets to support our claims.Comment: 15 page
    • …
    corecore