154 research outputs found

    Software for Modeling Ultrasound Breast Cancer Imaging

    Get PDF
    Computer-based models are increasingly used in biomedical imaging research to clarify links between anatomical structure, imaging physics, and the information content of medical images. A few three-dimensional breast tissue software models have been developed for mammography simulations to optimize current mammography systems or to test novel systems. It would be beneficial in the development of ultrasound breast imaging to have a similar computational model for simulation. A three-dimensional breast anatomy model with the lobular ducts, periductal and intralobular loose fibrous tissue, interlobular dense fibrous tissue, fat, and skin has been implemented. The parenchymal density of the model can be varied from about 20 to 75% to represent a range of clinically relevant densities. The anatomical model was used as a foundation for a three-dimensional breast tumour model. The tumour model was designed to mimic the ultrasound appearance of features used in tumour classification. Simulated two-dimensional ultrasound images were synthesized from the models using a first-order k-space propagation simulator. Similar to clinical ultrasound images, the simulated images of normal breast tissue exhibited non-Rayleigh speckle in regions of interest consisting of primarily fatty, primarily fibroglandular, and mixed tissue types. The simulated images of tumours reproduced several shape and margin features used in breast tumour diagnosis. The ultrasound wavefront distortion produced in simulations using the anatomical model was evaluated and a second method of modeling wavefront distortion was also proposed in which 10 to 12 irregularly shaped, strongly scattering inclusions were iii superimposed on multiple parallel time-shift screens to create the screen-inclusion model. Simulations of planar pulsed wave propagation through the two proposed models, a conventional parallel time-shift screen model, and digitized breast tissue specimens were compared. The anatomical model and screen-inclusion model were able to produce arrival-time fluctuation and energy-level fluctuation characteristics comparable to the digitized tissue specimens that the parallel-screen model was unable to reproduce. This software is expected to be valuable for imaging simulations that require accurate and detailed representation of the ultrasound characteristics of breast tumours

    Implementation and evaluation of a bony structure suppression software tool for chest X-ray imaging

    Get PDF
    Includes abstract.Includes bibliographical references.This project proposed to implement a bony structure suppression tool and analyse its effects on a texture-based classification algorithm in order to assist in the analysis of chest X-ray images. The diagnosis of pulmonary tuberculosis (TB) often includes the evaluation of chest X-ray images, and the reliability of image interpretation depends upon the experience of the radiologist. Computer-aided diagnosis (CAD) may be used to increase the accuracy of diagnosis. Overlapping structures in chest X-ray images hinder the ability of lung texture analysis for CAD to detect abnormalities. This dissertation examines whether the performance of texturebased CAD tools may be improved by the suppression of bony structures, particularly of the ribs, in the chest region

    COMPUTER AIDED SYSTEM FOR BREAST CANCER DIAGNOSIS USING CURVELET TRANSFORM

    Get PDF
    Breast cancer is a leading cause of death among women worldwide. Early detection is the key for improving breast cancer prognosis. Digital mammography remains one of the most suitable tools for early detection of breast cancer. Hence, there are strong needs for the development of computer aided diagnosis (CAD) systems which have the capability to help radiologists in decision making. The main goal is to increase the diagnostic accuracy rate. In this thesis we developed a computer aided system for the diagnosis and detection of breast cancer using curvelet transform. Curvelet is a multiscale transform which possess directionality and anisotropy, and it breaks some inherent limitations of wavelet in representing edges in images. We started this study by developing a diagnosis system. Five feature extraction methods were developed with curvelet and wavelet coefficients to differentiate between different breast cancer classes. The results with curvelet and wavelet were compared. The experimental results show a high performance of the proposed methods and classification accuracy rate achieved 97.30%. The thesis then provides an automatic system for breast cancer detection. An automatic thresholding algorithm was used to separate the area composed of the breast and the pectoral muscle from the background of the image. Subsequently, a region growing algorithm was used to locate the pectoral muscle and suppress it from the breast. Then, the work concentrates on the segmentation of region of interest (ROI). Two methods are suggested to accomplish the segmentation stage: an adaptive thresholding method and a pattern matching method. Once the ROI has been identified, an automatic cropping is performed to extract it from the original mammogram. Subsequently, the suggested feature extraction methods were applied to the segmented ROIs. Finally, the K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) classifiers were used to determine whether the region is abnormal or normal. At this level, the study focuses on two abnormality types (mammographic masses and architectural distortion). Experimental results show that the introduced methods have very high detection accuracies. The effectiveness of the proposed methods has been tested with Mammographic Image Analysis Society (MIAS) dataset. Throughout the thesis all proposed methods and algorithms have been applied with both curvelet and wavelet for comparison and statistical tests were also performed. The overall results show that curvelet transform performs better than wavelet and the difference is statistically significant

    Mammography

    Get PDF
    In this volume, the topics are constructed from a variety of contents: the bases of mammography systems, optimization of screening mammography with reference to evidence-based research, new technologies of image acquisition and its surrounding systems, and case reports with reference to up-to-date multimodality images of breast cancer. Mammography has been lagged in the transition to digital imaging systems because of the necessity of high resolution for diagnosis. However, in the past ten years, technical improvement has resolved the difficulties and boosted new diagnostic systems. We hope that the reader will learn the essentials of mammography and will be forward-looking for the new technologies. We want to express our sincere gratitude and appreciation?to all the co-authors who have contributed their work to this volume

    The stochastic digital human is now enrolling for in silico imaging trials -- Methods and tools for generating digital cohorts

    Full text link
    Randomized clinical trials, while often viewed as the highest evidentiary bar by which to judge the quality of a medical intervention, are far from perfect. In silico imaging trials are computational studies that seek to ascertain the performance of a medical device by collecting this information entirely via computer simulations. The benefits of in silico trials for evaluating new technology include significant resource and time savings, minimization of subject risk, the ability to study devices that are not achievable in the physical world, allow for the rapid and effective investigation of new technologies and ensure representation from all relevant subgroups. To conduct in silico trials, digital representations of humans are needed. We review the latest developments in methods and tools for obtaining digital humans for in silico imaging studies. First, we introduce terminology and a classification of digital human models. Second, we survey available methodologies for generating digital humans with healthy and diseased status and examine briefly the role of augmentation methods. Finally, we discuss the trade-offs of four approaches for sampling digital cohorts and the associated potential for study bias with selecting specific patient distributions

    COMPUTER AIDED SYSTEM FOR BREAST CANCER DIAGNOSIS USING CURVELET TRANSFORM

    Get PDF
    Breast cancer is a leading cause of death among women worldwide. Early detection is the key for improving breast cancer prognosis. Digital mammography remains one of the most suitable tools for early detection of breast cancer. Hence, there are strong needs for the development of computer aided diagnosis (CAD) systems which have the capability to help radiologists in decision making. The main goal is to increase the diagnostic accuracy rate. In this thesis we developed a computer aided system for the diagnosis and detection of breast cancer using curvelet transform. Curvelet is a multiscale transform which possess directionality and anisotropy, and it breaks some inherent limitations of wavelet in representing edges in images. We started this study by developing a diagnosis system. Five feature extraction methods were developed with curvelet and wavelet coefficients to differentiate between different breast cancer classes. The results with curvelet and wavelet were compared. The experimental results show a high performance of the proposed methods and classification accuracy rate achieved 97.30%. The thesis then provides an automatic system for breast cancer detection. An automatic thresholding algorithm was used to separate the area composed of the breast and the pectoral muscle from the background of the image. Subsequently, a region growing algorithm was used to locate the pectoral muscle and suppress it from the breast. Then, the work concentrates on the segmentation of region of interest (ROI). Two methods are suggested to accomplish the segmentation stage: an adaptive thresholding method and a pattern matching method. Once the ROI has been identified, an automatic cropping is performed to extract it from the original mammogram. Subsequently, the suggested feature extraction methods were applied to the segmented ROIs. Finally, the K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) classifiers were used to determine whether the region is abnormal or normal. At this level, the study focuses on two abnormality types (mammographic masses and architectural distortion). Experimental results show that the introduced methods have very high detection accuracies. The effectiveness of the proposed methods has been tested with Mammographic Image Analysis Society (MIAS) dataset. Throughout the thesis all proposed methods and algorithms have been applied with both curvelet and wavelet for comparison and statistical tests were also performed. The overall results show that curvelet transform performs better than wavelet and the difference is statistically significant

    X-ray Phase-Contrast Tomography: Underlying Physics and Developments for Breast Imaging

    Get PDF
    X-ray phase-contrast tomography is a powerful tool to dramatically increase the visibility of features exhibiting a faint attenuation contrast within bulk samples, as is generally the case of light (low-Z) materials. For this reason, the application to clinical tasks aiming at imaging soft tissues, as e.g., breast imaging, has always been a driving force in the development of this field. In this context, the SYRMA-3D project, which constitutes the framework of the present work, aims to develop and implement the first breast computed tomography system relying on the propagation-based phase-contrast technique at the Elettra synchrotron facility (Trieste, Italy). This thesis finds itself in the \u2018last mile\u2019 towards the in-vivo implementation, and the obtained results add some of the missing pieces in the realization of the project. The first part of the work introduces a homogeneous mathematical framework describing propagation-based phase contrast from the sample-induced X-ray refraction, to detection, processing and tomographic reconstruction. The original results reported in the following chapters include the implementation of a pre-processing procedure dedicated for a novel photon-counting CdTe detector; a study, supported by a rigorous theoretical model, on signal and noise dependence on physical parameters such as propagation distance and detector pixel size; hardware and software developments for improving signal-to-noise ratio and reducing the scan time; and, finally, a clinically-oriented study based on comparisons with clinical mammographic and histological images. The last part of the thesis attempts to widen the experimental horizon: first, a quantitative image comparison of the synchrotron-based setup and a clinically available breast-CT scanner is presented and then a practical laboratory implementation is detailed, introducing a monochromatic propagation-based micro-tomography setup making use on a high-power rotating anode source
    corecore