16 research outputs found

    On computational complexity of Siegel Julia sets

    Full text link
    It has been previously shown by two of the authors that some polynomial Julia sets are algorithmically impossible to draw with arbitrary magnification. On the other hand, for a large class of examples the problem of drawing a picture has polynomial complexity. In this paper we demonstrate the existence of computable quadratic Julia sets whose computational complexity is arbitrarily high.Comment: Updated version, to appear in Commun. Math. Phy

    Dynamics and abstract computability: computing invariant measures

    Get PDF
    We consider the question of computing invariant measures from an abstract point of view. We work in a general framework (computable metric spaces, computable measures and functions) where this problem can be posed precisely. We consider invariant measures as fixed points of the transfer operator and give general conditions under which the transfer operator is (sufficiently) computable. In this case, a general result ensures the computability of isolated fixed points and hence invariant measures (in given classes of "regular" measures). This implies the computability of many SRB measures. On the other hand, not all computable dynamical systems have a computable invariant measure. We exhibit two interesting examples of computable dynamics, one having an SRB measure which is not computable and another having no computable invariant measure at all, showing some subtlety in this kind of problems

    Computability of Julia sets

    Full text link
    In this paper we settle most of the open questions on algorithmic computability of Julia sets. In particular, we present an algorithm for constructing quadratics whose Julia sets are uncomputable. We also show that a filled Julia set of a polynomial is always computable.Comment: Revised. To appear in Moscow Math. Journa
    corecore