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Abstract. We consider the question of computing invariant measures from an
abstract point of view. Here, computing a measure means finding an algorithm

which can output descriptions of the measure up to any precision. We work

in a general framework (computable metric spaces) where this problem can be
posed precisely. We will find invariant measures as fixed points of the transfer

operator. In this case, a general result ensures the computability of isolated

fixed points of a computable map.
We give general conditions under which the transfer operator is computable

on a suitable set. This implies the computability of many “regular enough”

invariant measures and among them many physical measures.
On the other hand, not all computable dynamical systems have a com-

putable invariant measure. We exhibit two examples of computable dynamics,

one having a physical measure which is not computable and one for which
no invariant measure is computable, showing some subtlety in this kind of
problems.

1. Introduction. An important fact motivating the study of the statistical prop-
erties of dynamical systems is that the pointwise long time prediction of a chaotic
system is not possible, whereas, in many cases, the estimation or forecasting of
averages and other long time statistical properties is. This often corresponds in
mathematical terms to computing invariant measures, or estimating some of their
properties.

Giving a precise meaning to the computation of a continuous object like a mea-
sure is not a completely obvious task and involves the definition of effective versions
of several concepts from mathematical analysis.

Our approach will be mainly based on the concept of computable metric space.
To give a first example, let us consider the set R of real numbers. Beyond Q there
are many other real numbers that can be handled by algorithms: π or

√
2 for

instance can be approximated at any given precision (with rational numbers) by an
algorithm. We can then identify a number with the algorithm that calculates it (if
any) or, more precisely, to the string representing the program that approximates it.
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This set of points is called the set of computable real numbers and was introduced
in the famous paper [35].

This kind of construction can be generalized to virtually any other separable
metric space, taking a dense countable subset to play the same role as the rationals
in the above example. Then, computable (or recursive, or effective) counterparts
of most mathematical notions can be defined, and rigorous statements about the
algorithmic approximation of abstract objects can be made, obtaining algorithmic
versions of many classical theorems (see Section 2). In particular, this general
approach gives the possibility to treat computation in measures spaces in a simple
way, defining computable measures and computable functions between those spaces
(and applying it to transfer operators). This will be the main theme of this paper.

The paper is devoted to the problem of computation of invariant measures in
discrete time dynamical systems. By discrete time dynamical system we mean a
system (X, T ) were X is a metric space and T : X → X is a Borel measurable
transformation. Here an invariant measure is a Borel probability measure µ on X
such that for each measurable set A it holds µ(A) = µ(T−1(A)). Such measures
contain information on the statistical behavior of the system (X, T ) and on the
possible behavior of averages of observables along typical trajectories of the system.
The map T moreover induces a function LT : PM(X) → PM(X), where PM(X)
is the set of Borel probability measures over X endowed with a suitable metric (for
details see Section 2.5). LT is called the transfer operator associated to T (definition
and basic results about this are reminded in Section 3).

Before entering into details about the computation of measures and invariant
measures in particular, we remark that whatever we mean by “approximating a
measure by an algorithm”, there are only countably many “measure approximating
algorithms” whereas, in general, a dynamical system may have uncountably many
invariant measures (usually an infinite dimensional set). So, a priori most of them
will not be algorithmically describable. This is not a problem because we should
put our attention on the most “meaningful” ones. An important part of the theory
of dynamical systems is indeed devoted to the understanding of “physically” rele-
vant invariant measures. Informally speaking, these are measures which represent
the asymptotic statistical behavior of “many” (positive Lebesgue measure) initial
conditions, see Section 3. The existence and uniqueness of physical measures is a
widely studied problem (see [37]), which has been solved for some important classes
of dynamical systems. These measures are the good candidates to be computed.

Let us precise the concept of computable measure. As mentioned before, the
framework of computable analysis can be applied to abstract metric spaces as the
space PM(X). A measure µ is then computable if it is a computable point of this
measure space. In this case there is an algorithm such that, for each rational ε
given as input, outputs a “finitely representable” measure (a finite rational convex
combination of Dirac measures supported on “rational” points) which is ε-close to
µ.

In the literature, there are several works dealing with the problem of approxi-
mating invariant measures, more or less informally from the algorithmic point of
view (see e.g. [29, 25, 27, 31, 15, 16]). In these works the main technique con-
sists in an adequate discretization of the problem. More precisely, in several of the
above works the transfer operator associated to the dynamics is approximated by a
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finite dimensional one and the problem is reduced to the computation of the corre-
sponding relevant eigenvectors (some effective convergence result then validates the
quality of the approximation).

Another strategy to face the problem of computation of invariant measures con-
sist in following the way the measure µ can be constructed and check that each step
can be realized in an effective way. In some interesting examples we can obtain the
physical measure as limit of iterates of the Lebesgue measure µ = limn→∞ Ln

T (m)
where m is the Lebesgue measure and LT is the transfer operator associated to T .
To prove computability of µ the main point is to recursively estimate the speed of
convergence to the limit. This sometimes can be done using the decay of corre-
lations (see [20] where computability of physical measures in uniformly hyperbolic
systems is proved in this way, see [22] for general relations between convergence of
measures and decay of correlations with a point of view similar to the one of the
present paper).

Let us illustrate the main results of the paper. The pair (X, T ) is called a
computable dynamical system, provided X is a computable metric space and T :
X → X a computable transformation (for the precise definitions see Section 2.3).
In this context, the general problem we are facing can be stated in the following
terms:

Problem 1.

a) Given a computable dynamical system (X, T ), does it admit computable in-
variant measures?

b) Can they be found in an algorithmic way, starting from the description of the
system?

We will see that even the above question a) does not always have a positive
answer. However, in many interesting situations, both of the above problems can
be positively solved.

We will take an abstract point of view finding the interesting invariant measure
as a fixed point of the transfer operator, giving general conditions ensuring its com-
putability. The main tool for this purpose will be the following statement (we give
it informally, see Theorems 3.1 and 3.2 for precise statements).

Theorem A Let X be a computable metric space and T a function which is com-
putable on X \ D. Let us consider the dynamical system (X, T ).

i) LT is computable on the set of measures

PMD(X) := {µ ∈ PM(X) : µ(D) = 0}.
ii) If there is a recursively compact set of probability measures V ⊂ PM(X) such

that for every µ ∈ V , µ(D) = 0 holds, then every invariant measure isolated
(for the weak topology) in V is computable.

The precise meaning of computability on X \ D will be given in Section 2.3.
Intuitively, the meaning of the above proposition is that: if the function T is com-
putable outside some singular set D (the discontinuity set for instance) and if we
can find a set V of measures giving no weight to the set D (some class of regular
measures e.g.) which contains only one invariant measure, then this measure can
be computed.

We observe that in our statement we do not need any hyperbolicity assumption
on the system.
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As a consequence, physical measures are computable in many examples of com-
putable systems (uniquely ergodic systems, piecewise expanding maps, systems hav-
ing an indifferent fixed point and many other systems having a unique absolutely
continuous invariant measure, see Theorem 3.2 and Propositions 9, 10).

Observe that any object which is “computable” in some way (as T, V, µ in the
theorem) admits a finite description (a finite program). Item ii) in Theorem A is
actually uniform: there is a single algorithm which takes finite descriptions of T
and V and which, as soon as the hypothesis in Theorem A are satisfied and µ is
a unique invariant measure in V , outputs a finite description of µ (see Remark 6
and the above item b) of Problem 1). Observe that the algorithm cannot decide
whether or not the hypotheses are satisfied, but computes the measure whenever
they are fulfilled.

After such general statements, one could conjecture that, in computable dynami-
cal systems, physical measures are always computable. Surprisingly, this is not true
and reveals some subtlety about the general problem of computing an invariant
measure. In section 4 we will see that:

Examples There exists a computable dynamical system having no computable mea-
sure at all. Moreover, there exists a computable dynamical system on the unit in-
terval having a single physical measure which is not computable.

The interest of the second example comes from the fact that any computable
map of the interval must have a computable fixed point, and hence a computable
invariant measure. The example shows that important invariant measures can still
be missed.

To further motivate these results, we finally remark that from a technical point of
view, computability of the considered invariant measure is a requirement in several
results about relations between computation, probability, randomness and pseudo-
randomness (see e.g. [3, 19, 20, 21]).

1.1. Plan of the paper. In Section 2 we give a compact and self-contained intro-
duction to the prerequisites about computable analysis which are necessary to work
with dynamical systems on metric spaces, as well as some general statements about
solutions of equations on metric spaces which will be used to “find” the interesting
invariant measures as fixed points of the transfer operator (Theorem 3). At the
end of that section we develop the computable treatment of the space of probability
measures on a given (computable) metric space. Some of the results presented there
are new and should be of independent interest. Their usefulness is demonstrated in
the next sections.

In Section 3 we start considering dynamical systems. A direct application of
the results of the previous section allows us to establish general assumptions under
which the transfer operator is computable (on a suitable subset, Theorem 3.1).

We then use the framework and tools introduced before to face Problem 1. We
prove Theorem A above (which also becomes a simple application of previous re-
sults) and show how to apply it in order to prove the computability of many inter-
esting invariant measures.

In Section 4 we construct the two counter-examples already announced.
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2. Preliminaries on algorithmic theory.

2.1. Analysis and computation. A way to approach several problems from math-
ematical analysis by computational tools is to approximate the “infinite” mathemat-
ical objects (elements of non countable sets, as real numbers or functions) involved
in the problem by some algorithm which constructs an approximating sequence of
“finite” objects (rational numbers, polynomials with rational coefficients) which are
“treatable” by the computer. Usually, the algorithm has to manipulate and decide
questions about the various mathematical objects involved, and convergence results
should be provided in order to choose the suitable level of accuracy for the finite
approximation. The actual implementation of the algorithm and the various deci-
sions are, in most cases, subject to round-off errors which can produce additional
approximation errors, wrong decisions or undecidable situations if the error is not
considered rigorously (how to decide x ≥ y when x = y but x, y are known only up
to some precision?). Sometimes, estimates for these errors can be obtained under
suitable conditions, but this is in general a further and often nontrivial task (see e.g.
[6]). In this paper we will work in a framework where the algorithmic abilities of the
computer to represent and manipulate infinite mathematical objects are taken into
account from the beginning. In this framework (often referred to as Computable
Analysis) one can rigorously determine which objects can be algorithmically ap-
proximated at any given accuracy (these will be called computable objects), and
which cannot.

Here, the word computable is used, but may be adapted to each particular situ-
ation: for instance, “computable” functions from N to N are called recursive func-
tions, a fundamental notion of computability on subsets of N is that of recursively
enumerable sets, etc.

2.2. Background from recursion theory. The starting point of recursion the-
ory was to give a mathematical definition making precise the intuitive notions of
algorithmic or effective procedure on symbolic objects. Every mathematician has a
more or less clear intuition of what can be computed by algorithms.

Several different formalizations have been independently proposed (by Post,
Church, Kleene, Turing, . . . ) in the 30’s, and have proved to be equivalent: they
compute the same functions from N to N. This class of functions is now called
the class of recursive functions. As an algorithm is allowed to run forever on an
input, these functions may be partial, i.e. not defined everywhere. The domain of
a recursive function is the set of inputs on which the algorithm eventually halts. A
recursive function whose domain is N is said to be total. For formal definitions see
for example [32].

The notion of recursive function induces directly an important computability no-
tion on the class of subsets of N: a set of natural numbers is said to be recursively
enumerable (r.e. for short) if it is the range of some partial recursive function.
That is, if there exists an algorithm listing (or enumerating) the set. If the com-
plement of a r.e. set is also r.e., then the set is said to be recursive. It is easy to
see that a set E ⊂ N is r.e. if and only if there is an algorithm to semi-decide
whether a given integer n belongs to E or not. In other words, the algorithm halts
on input n if and only if n ∈ E. Let (Ei)i∈N be a family of r.e. subsets of N. We
say that Ei is r.e. uniformly in i if there is a single recursive function ϕ such that
Ei = {ϕ(i, n) : n ∈ N}. More generally, computability notions for different classes
of objects (reals, open sets) will be defined in the following form:
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object x is computable if there is a (partial or total) recursive function ϕ which
computes x in some sense,

and for each of them, a uniform version will be implicitly defined (and intensively
used in the paper) by:

objects from a family (xi)i∈N are uniformly computable if there is a single (total
or partial) recursive function ϕ such that ϕ(i, .) computes xi for each i.

Strictly speaking, recursive functions only work on natural numbers, but this can
be extended to the objects (thought of as “finite” objects) of any countable set, once
a numbering of its elements has been fixed. Such a set together with its numbering
will be called a numbered set. For instance, the set Q of rational numbers can
be injectively numbered Q = {q0, q1, . . .} (turning it into a numbered set) in an
effective way: the number i of a rational a/b can be computed from a and b, and
vice versa. We fix such a numbering. A set of rational numbers X ⊂ Q is then r.e.,
if there is a r.e. set E ⊂ N such that X = {qn : n ∈ E}.

The following notions were introduced by Turing in [35].

Definition 2.1. Let x be a real number. We say that:
• x is lower semi-computable if the set {q ∈ Q : q < x} is r.e.,
• x is upper semi-computable if the set {q ∈ Q : q > x} is r.e.,
• x is computable if it is lower and upper semi-computable.

The following classical characterization may be more intuitive: a real number is
computable if and only if there exists a recursive function ϕ computing a sequence
of rational numbers which converge exponentially to x, that is, |qϕ(i) − x| < 2−i

for all i. We remark that, as there exist subsets of integers which are recursively
enumerable but not recursive, there also exist semi-computable numbers which are
not computable. In the following section we will see how these notions can be
generalized to separable metric spaces, which inherit the computable structure of
R via the metric.

2.3. Computable metric spaces. In this section we introduce the basic tools
of computable analysis on metric spaces. Most of the results of this section and
several of the following ones have been obtained by Weihrauch, Brattka, Presser
and others in the framework of “Type-2 theory of Effectivity”, which is based in
the notion of “representation” (infinite binary codes) of mathematical objects. A
standard reference book on this approach to Computable Analysis is [39], and a
specific paper on computability of subsets of metric spaces is [8]. Our approach
to Computable Analysis only uses the notion of recursive function (see subsection
2.2). It is intended to emphasize the fact that computability notions are just the
“effective” versions of topological ones. In this way we obtain a theory syntacti-
cally familiar to most mathematicians and computability results can be proved in
a transparent and compact way.

A computable metric space is a metric space with a dense numbered set such that
the distance on this set is algorithmically compatible with the numbering (distances
between numbered points can be computed up to arbitrary precision). From this
point of view the real line (with euclidean distance) has a natural structure of
computable metric space, with the rationals as a numbered set.

Definition 2.2. A computable metric space is a triple X = (X, d,S), where

• (X, d) is a separable metric space,
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• S = {si : i ∈ N} is a countable dense subset of X with a fixed numbering (the
set of ideal points),

• the real numbers d(si, sj) are all computable, uniformly in i, j.

Cantor spaces, euclidean spaces, functions spaces and manifolds with a suitable
metrics can be endowed with the structure of computable metric space.

An ideal ball is a metric ball B(s, q) where s ∈ S is an ideal point and q is
a positive rational number. The numberings of S and Q ∩ (0,+∞) induce some
canonical effective numbering B = {Bn : n ∈ N} of the set of ideal balls.

Let (X, d,S) be a computable metric space. The computable structure of X
assures that the whole space can be “reached” using algorithmic means. Since the
set S is dense, ideal points can approximate any point at any finite precision, and
B is a basis of the topology.

Definition 2.3 (Computable points). A point x ∈ X is said to be computable if
the set of ideal balls containing x is r.e.

Remark 1. As in the case of the real numbers we have the following characteriza-
tion: x ∈ X is computable if and only if there is a (total) recursive function ϕ such
that d(sϕ(i), x) < 2−i for all i.

Ideal balls are also useful to describe open sets.

Definition 2.4 (Recursively open sets). We say that the set U ⊂ X is recursively
open if there is some r.e. set A of ideal balls such that U =

⋃

B∈A B. That is, if
there is some r.e. set E ⊆ N such that U =

⋃

i∈E Bi.

Observe that the collection of r.e. open sets can be algorithmically enumerated.

Examples 2.3.1.

1. Let (Un)n∈N be a sequence of uniformly recursive open sets. The union
⋃

n Un

is a recursively open set.
2. Let U1, ..., Un be recursively open sets. Their intersection is recursively open

also. This is a uniform operation, in the sense that there is a single algorithm
which takes as input the descriptions of a finite list of open sets, and outputs
the description of their intersection.

y

Let X, Y be two computable metric spaces. To distinguish between ideal balls
of X and Y , we use the notations BX

n , BY
n .

Definition 2.5 (Computable functions). A function T : X → Y is said to be
computable if T−1(BY

n ) is recursively open uniformly in n.

It follows that computable functions are continuous. It is easy to see that the
distance d : X×X → R is a computable function. Since we will work with functions
that are not necessarily continuous everywhere, we shall consider functions that are
computable on some subset of X. More precisely:

Definition 2.6. A function T is said to be computable on C (C ⊂ X) if there
is a sequence UX

n of uniformly recursive open sets such that

T−1(BY
n ) ∩ C = UX

n ∩ C.

The set C is called the domain of computability of T .
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Remark 2. Intuitively, a function T is computable (on some domain C) if there
is a computer program which computes T (x) (for x ∈ C) in the following sense: on
input ǫ > 0, the program, along its run, asks the user for approximations of x, and
eventually halts and outputs an ideal point s ∈ Y satisfying d(T (x), s) < ǫ. This
idea can be formalized, using for example the notion of oracle computation. The
resulting notion coincides with the one given in the previous definitions.

Let R = R ∪ {−∞,+∞} be the extended real line.

Definition 2.7 (Lower semi-computable functions). A function f : X → R is said
to be lower semi-computable if f−1(qn,∞) is recursively open uniformly in n.

It is known that there exists a recursive enumeration {fi : i ∈ N} of all the non-
negative lower semi-computable functions. From the definition it follows that lower
semi-computable functions are lower semi-continuous. Lower semi-computability
on D is defined as for computable functions. A function f is upper semi-
computable if −f is lower semi-computable. It is easy to see that a real function
f is computable if and only if it is upper and lower semi-computable.

Given a probability measure µ, we say that a function is (lower semi-) com-
putable µ-almost everywhere if it is computable on a set of µ-measure one.

2.4. Recursively compact sets and approximation of zeros. We will give
some general results about zeroes of computable functions. As in many other math-
ematical situations, to prove the existence of certain solutions we are helped by a
suitable notion of compactness. In order for the solution to be computable, we
will need a recursive version of compactness. Roughly, a compact set is recursively
compact if the fact that it is covered by a finite collection of ideal balls can be
tested algorithmically (for equivalence with the ǫ-net approach see Definition 2.10
and Proposition 4). This kind of notion and the related basic results are already
present in the literature in various forms (see [8] for a complete treatment). We
give a very compact self contained presentation based on the previously introduced
notions.

Definition 2.8. A set K ⊆ X is recursively compact if it is compact and there
is a recursive function ϕ : N∗ → N such that ϕ(i1, . . . , ip) halts if and only if
(Bi1 , . . . , Bip

) is a covering of K.

Remark 3. Let Ui be the collection of recursively open sets (with its uniform
enumeration). It is easy to see that a compact set K is recursively compact iff the
set {i : K ⊆ Ui} is r.e.

Here are some basic properties of recursively compact sets:

Proposition 1. Let K be a recursively compact subset of X.

1. A singleton {x} is recursively compact if and only if x is a computable point.
2. X \ K is recursively open.
3. If U is recursively open, then K ′ = K \ U is recursively compact.
4. If K ′ is recursively compact then so are K ∪ K ′ and K ∩ K ′.
5. If f : X → R is lower semi-computable then so is infK f
6. If f : X → R is upper semi-computable then so is supK f
7. The diameter of K is upper semi-computable.

Proof. (1) x ∈ Bi ⇐⇒ {x} ⊆ Bi. (2) X \ K =
⋃

K⊆X\Bi
Bi where Bi = {x :

d(s, x) ≤ r} if Bi = B(s, r). (3) One has K \ U ⊆ V ⇐⇒ K ⊆ U ∪ V and U ∪ V
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is recursively open uniformly in U and V . (4) K ∪ K ′ ⊂ U iff K ⊂ U and K ′ ⊂ U .
K∩K ′ = K \ (X \K ′) and use (2) and (3). (5) infK f = sup{q : K ⊆ f−1(q, +∞)}.
(6) supK f = inf{q : K ⊆ f−1(−∞, q)}. (7) Apply (6) to the computable function
d : X × X → R and the recursive compact set K × K.

Remark 4. The arguments are uniform. In point (1) for instance, this means that
there is an algorithm which takes a program computing x and outputs a program
testifying the recursive compactness of {x}, and vice-versa.

Corollary 1. If (Ki)i∈N are uniformly recursively compact sets, then so is
⋂

i∈N
Ki.

Proof. The complements of recursively compact sets are recursively open. Then by
Proposition 1, part (3) the set

⋂

i∈N
Ki = K0\(

⋃

i>0 Kc
i ) is recursively compact.

It is important to remark that a recursively compact set needs not contain com-
putable points. This will be used in section 4.

Proposition 2. There exists a nonempty recursively compact set K ⊂ [0, 1] con-
taining no computable point.

Proof. Let In be an enumeration of all the rational intervals and ǫ > 0 be a rational
number. Consider an enumeration ϕi of all the partial recursive functions. Put
E = {i ≥ 1 : ϕi(i) halts and |Iϕi(i)| < ǫ2−i}. E is a r.e. subset of N. Let

U =
⋃

i∈E Ii: λ(U) ≤ ∑

i∈E ǫ2−i ≤ ǫ. Let x ∈ [0, 1] be a computable real number.
There is a total recursive function ϕi such that |Iϕi(n)| < ǫ2−n and x ∈ Iϕi(n) for
all n, so i ∈ E and x ∈ U . Hence U contains all computable points. As [0, 1] is
recursively compact, so is K = [0, 1] \ U .

The following proposition is an elementary example of how many statements
about topology and calculus on metric spaces can be easily translated to the com-
putable setting.

Proposition 3 (Stability by computable functions). Let f : K ⊆ X → Y be
a function computable on a recursively compact set K. Then f(K) is recursively
compact.

Proof. Let UY
n be an enumeration of all the recursively open sets of Y . As f is

computable on K, there are uniformly recursively open sets Vn ⊆ X such that
f−1(UY

n ) ∩ K = Vn ∩ K. The set f(K) is recursively compact because the relation
f(K) ⊆ UY

n is semi-decidable. Indeed, f(K) ⊆ UY
n ⇐⇒ K ⊆ f−1(UY

n ) ⇐⇒ K ⊆
Vn.

Remark that the argument is uniform: if (Ki)i∈N is a sequence of uniformly
recursively compact subsets of X on which f is computable, then (f(Ki))i∈N is a
sequence of uniformly recursively compact subsets of Y . We will say that f(K) is
recursively compact uniformly in K.

As a first simple example of application, we observe that in some cases the global
attractor of a (computable) dynamical system can be approximated by an algorithm.

Corollary 2. Let X be a recursively compact computable metric space and T a
computable dynamics on it. Then the set:

Λ :=
⋂

n≥0

Tn(X)

is recursively compact.
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Proof. Apply Proposition 3 and Corollary 1.

As said before, we will compute invariant measures by approximating the fixed
points of the transfer operator. There is a well known result stating computability of
isolated zeros (and then fixed points) of computable functions (see [38], and [12]).
We will need the following more general version, applicable to any metric space.
Observe that in this version, the function need not be everywhere computable, but
only on some compact subset where we are looking for the solution.

Theorem 2.9. Let K be a recursively compact subset of X and f : X → R be a
function computable on K. Then every isolated (in K) zero of f is computable.

Proof. Let x0 be an isolated zero of f . Let B(s, r) be an ideal ball containing x0

such that the only zero of f lying in B(s, r) ∩ K is x0. The set N = {x : f(x) 6=
0} ∪ {x : d(x, s) > r} is recursively open in K (that is, N ∩ K = U ∩ K with U
recursively open), so {x0} = K \ N = K \ U is recursively compact by Proposition
1. Hence, x0 is a computable point.

Remark 5. Observe that the argument is uniform in f and an ideal ball isolating
the zero (if the zero is unique in K the ball is not needed). In particular, there
is an algorithm which takes a finite description of f and the ball and outputs the
corresponding zero.

Corollary 3. Let K be a recursively compact subset of X and f : X → X be a
function computable on K. Then every isolated (in K) fixed point of f is com-
putable.

Proof. Apply the preceding theorem to the function g : X → R defined by g(x) =
d(x, f(x)).

We will use the following characterization of recursive compactness, by means of
effective ǫ-nets.

Definition 2.10. A computable metric space is recursively precompact if there
is a total recursive function ϕ : N → N∗ such that for all n, ϕ(n) computes a
2−n-net: that is ϕ(n) = (i1, . . . , ip) where (si1 , . . . , sip

) is a 2−n-net.

Here is a computable version of a classical theorem:

Proposition 4. Let X be a computable metric space. X is recursively compact if
and only if it is complete and recursively precompact.

Proof. If X is recursively compact then we define the following algorithm: it takes
n as input, then enumerates all the (i1, . . . , ip), and tests whether

(B(si1 , 2
−n), . . . , B(sip

, 2−n))

is a covering of X (this is possible by recursive compactness). As X is compact,
hence precompact, such a covering exists and will be eventually enumerated: output
it. The algorithm makes X recursively precompact.

Suppose that X is complete and recursively precompact. Let us consider a collec-
tion (B(s1, q1), . . . , B(sk, qk)) of ideal balls: we claim that (B(s1, q1), . . . , B(sk, qk))
covers X if and only if there exists n such that each point s of the 2−n-net given by
recursive precompactness lies in a ball B(si, qi) satisfying d(s, si) + 2−n < qi. The
procedure which enumerates all the n and semi-decides this halts if and only if the
initial sequence of balls covers X. We leave the proof of the claim to the reader
(take n such that 2−n is less than the Lebesgue number of the finite covering).
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2.5. Computable measures. Let us consider the space PM(X) of Borel proba-
bility measures over X. Let C0(X) be the set of real-valued bounded continuous
functions on X. We recall the notion of weak convergence of measures:

Definition 2.11. µn is said to be weakly convergent to µ if
∫

f dµn →
∫

f dµ for
each f ∈ C0(X).

Let us introduce the Wasserstein-Kantorovich distance between measures. Let
µ1 and µ2 be two probability measures on X and consider:

W1(µ1, µ2) = sup
f∈1-Lip(X)

∣

∣

∣

∣

∫

f dµ1 −
∫

f dµ2

∣

∣

∣

∣

where 1-Lip(X) is the space of functions on X having Lipschitz constant less than
one. We remark that since adding a constant to the test function f does not change
the above difference

∫

f dµ1 −
∫

f dµ2, the supremum can be taken over the set of
1-Lipschitz functions mapping a distinguished ideal point s0 to 0. The distance W1

has the following useful properties which will be used in the following.

Proposition 5 (see [1] Prop 7.1.5).

1. W1 is a distance and if X is bounded, separable and complete, then PM(X)
with this distance is a separable and complete metric space.

2. If X is bounded, a sequence is convergent for the W1 metrics if and only if it
is convergent for the weak topology.

3. If X is compact PM(X) is compact with this topology.

Item (1) has an effective version: PM(X) inherits the computable metric struc-
ture of X. Indeed, given the set SX of ideal points of X we can naturally define a
set of ideal points SPM(X) in PM(X) by considering finite rational convex combi-
nations of the Dirac measures δs supported on ideal points s ∈ SX . This is a dense
subset of PM(X). The proof of the following proposition can be found in ([24]).

Proposition 6. If X bounded then (PM(X), W1,SPM(X)) is a computable metric
space.

A measure µ is then computable if there is a sequence µn ∈ SPM(X) converging
exponentially fast to µ (see Remark 1) in the W1 metric (and hence for the weak
convergence).

The following lemma, which will be very important to us, says that point (3) of
Proposition 5 also has an effective version:

Lemma 2.12. If X is a recursively precompact metric space, then PM(X) with
the W1 distance is a recursively precompact metric space.

Proof. We will show how to effectively find an r−net for each r of the form r =
1
n
, n ∈ N. Let us consider the set Sr = { k

n
, 0 ≤ k ≤ n} subdividing the unit intervals

in equal segments. Let us also consider an r-net Nr = {x1, ...xm} constructed by
recursive compactness of X. Now let us consider the set Υr of measures with support
in Nr given by

Υr = {k1δx1
+ ... + kmδxm

s.t. ki ∈ Sr , k1 + ... + km = 1}.
This is a 2r net in PM(X). To see this let us consider a probability measure µ on
X. Let C1 = B(x1, r) and Ci = B(xi, r) \ (B(x1, r) ∪ . . . ∪ B(xi−1, r)) for i > 1.
{Ci : 1 ≤ 1 ≤ m} is a partition of the space. We concentrate the mass of every
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cell Ci into the point xi: let µ′ be the measure defined by µ′ =
∑

i µ(Ci)δxi
. As

Ci ⊆ B(xi, r), W1(µ, µ′) ≤ ∑

i µ(Ci)r = r.
Now µ′ has the same support as the measures in Υr and there is ν ∈ Υr such

that |
∫

f dµ′ −
∫

f dν| ≤ r (recall that r = 1/n) for each f ∈ 1-Lip(X), hence
W1(µ

′, ν) ≤ r and then W1(µ, ν) ≤ 2r and this proves the statement.

We recall that the nonnegative lower semi-computable functions on X can be
recursively enumerated: let fi be such an enumeration. The computability of a
measure can be characterized this way (see [24], Corollary 4.3.1):

Lemma 2.13. Let X be a bounded computable metric space and C be any subset
of PM(X).

1. the functions µ 7→
∫

fi dµ are lower semi-computable, uniformly in i,
2. µ ∈ PM(X) is computable iff the numbers

∫

fi dµ are lower semi-computable,
uniformly in i,

3. L : PM(X) → PM(X) is computable on C iff the functions µ 7→
∫

fi dL(µ)
are lower semi-computable on C, uniformly in i.

An interesting remark about computable measures is that they must have com-
putable points in the support. This will be used in section 4.1.

Proposition 7. If µ is a computable probability measure, then there exist com-
putable points in the support of µ.

Proof. The sequence of functions fi := 1Bi
(the indicator functions of ideal balls)

are uniformly lower semi-computable. By Lemma 2.13, the numbers
∫

fi dµ = µ(Bi)
are uniformly lower semi-computable. Hence, the set E = {Bi : Bi∩supp(µ) 6= ∅} =
{Bi : µ(Bi) > 0} is recursively enumerable. From any ideal ball B = B(s, q) ∈ E,
we can effectively construct a decreasing sequence of ideal closed balls intersecting
supp(µ), and whose radius decrease exponentially fast to zero. Their intersection is
a singleton that contains a computable point.

3. Computing invariant measures. Let X be a metric space, T : X 7→ X a
Borel measurable map and µ a T -invariant Borel probability measure. A set A
is called T -invariant if T−1(A) = A (mod 0). The system (X, T, µ) is said to be
ergodic if each T -invariant set has total or null measure. In such systems the famous
Birkhoff ergodic theorem says that time averages computed along µ-typical orbits
coincides with space average with respect to µ. More precisely, for any f ∈ L1(X, µ)
it holds

lim
n→∞

Sf
n(x)

n
=

∫

f dµ, (3.1)

for µ almost each x, where Sf
n = f + f ◦ T + . . . + f ◦ Tn−1.

This shows that in an ergodic system, the statistical behavior of observables,
under typical realizations of the system is given by the average of the observable
made with the invariant measure.

We say that a point x belongs to the basin of an invariant measure µ if (3.1)
holds at x for each bounded continuous f . In case X is a manifold (possibly with
boundary), a physical measure is an invariant measure whose basin has positive
Lebesgue measure (for more details and a general survey see [37]).

In the applied literature the most common method to simulate or understand the
above statistical behaviors is to compute and study some trajectory. This method
has three main theoretical problems which motivate the search of another approach:
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• numerical errors,
• typicality of the sample,
• how many iteration are necessary?

The first (and widely known) problem is the amplification of the numerical error
(if the system is sensitive to initial conditions as most interesting systems are). Here
the shadowing results are often invoked to justify the correctness of simulations,
but rigorous results are proved only for a small class of systems (see e.g. [30]) and
moreover the mere existence of a shadowing orbit does not say anything about its
typicality (see e.g. [6, 7] for a further discussion on numerical errors).

The second problem is indeed that this method should compute, in order to be
useful, a trajectory which shows the “typical” behavior of the system: a behavior
which takes place with large or full probability. The main problem here is the fact
that the set of initial conditions the computer has access to, being countable, has
probability zero. Hence, there is no guarantee that what we see on the screen is
typical in some sense. On the contrary, in a chaotic system, typical orbits are far
from being describable by a finite program. It is true for example that in an ergodic
system having positive entropy h, a typical n-steps orbit segment needs approxi-
matively a program which is hn bits long to be described (up some approximation
ǫ, see e.g. [10] for the original result or [18, 21] for a version in the framework
of computable analysis). We remark, however, that if one looks for points which
behave as typical ones for Birkhoff averages (hence they look typical with respect to
some particular aspect) there are some rigorous results partly supporting this way
to proceed: in several classes of systems there are computable initial conditions
which are typical with respect to Birkhoff averages (see [20] for a precise result).

The third problem however remains. Even if one finds a program describing a
typical orbit of the system, how many iterations should be considered to be close to
the limit behavior, so that the orbit represents the invariant measure up to a certain
approximation? Although this problem can be approached rigorously in some cases
(see [11, 2] e.g.) we will not adopt this point of view. We will study the system’s
statistical behavior by directly computing the invariant measure as fixed points of
a certain transfer operator.

3.1. The transfer operator. A function T between metric spaces naturally in-
duces a linear function LT between probability measure spaces. This function LT

is linear and is called transfer operator (associated to T ). Measures which are
invariant for T are fixed points of LT .

Let us consider a computable metric space X and a measurable function T :
X → X. Let us also consider the space PM(X) of Borel probability measures on
X.

Let us define the function LT : PM(X) → PM(X) by duality in the following
way: if µ ∈ PM(X) then LT (µ) is such that

∫

f dLT (µ) =

∫

f ◦ T dµ

for each f ∈ C(X). In the next sections, invariant measures will be found as
solutions of the equation W1(µ, L(µ)) = 0. To apply Theorem 2.9 and Corollary
3 to this equation we need that L be computable. We remark that if T is not
continuous then L is not necessarily continuous (this can be realized by applying
L to some delta measure placed near a discontinuity point) hence not computable.
Still, we have that L is continuous (and its modulus of continuity is computable)
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at all measures µ which are “far enough” from the discontinuity set D. This is
technically expressed by the condition µ(D) = 0.

Theorem 3.1. Let X be a computable metric space and T : X → X be a function
which is computable on X \ D. Then LT is computable on the set of measures

PMD(X) := {µ ∈ PM(X) : µ(D) = 0}. (3.2)

Proof. By Lemma 2.13, we have to prove that the function µ 7→
∫

fi dLT (µ) =
∫

fi ◦ T dµ is lower semi-computable on PMD(X), uniformly in i. The difficulty
here comes from the fact that the functions fi ◦ T are not lower semi-computable
on the whole space anymore, but only on X \ D. We overcome this way: for each
i, we construct a function gi, which is lower semi-computable on the whole space,
and that coincides with fi ◦ T on X \ D. The construction is as follows: let Un be
uniformly recursively open sets such that (fi ◦ T )−1(qn,∞) \D = Un \D (qn is the
enumeration of the rationals). The function gi is defined by

gi(x) = sup
n

qn1Un
(x).

The function µ 7→
∫

gi dµ is lower semi-computable, uniformly in i, by Lemma
2.13, item (1). For µ ∈ PMD(X),

∫

gi dµ =
∫

fi ◦ T dµ so LT is computable on
PMD(X), by Lemma 2.13, item (3).

In particular, if T is computable on the whole space X then L is computable on
all PM(X).

3.2. Computing invariant “regular” measures. The above tools allow us to
ensure the computability of LT on a large class of measures. This will enable us to
apply Corollary 3 and see an invariant measure as a fixed point.

Theorem 3.2. Let X be a computable metric space and T a function which is
computable on X \ D. Suppose there is a recursively compact set of probability
measures V ⊂ PM(X) such that for every µ ∈ V , µ(D) = 0 holds. Then every
invariant measure isolated in V is computable.

Proof. By Theorem 3.1, LT is computable on V . Since V is recursively compact,
Theorem 2.9 implies the computability of any fixed point µ of LT , i.e. any T -
invariant measure, that is isolated in V .

Remark 6. This theorem is uniform: there is an algorithm which takes as inputs
finite descriptions of T, V and an ideal ball in M(X) which isolates an invariant
measure µ, and outputs a finite description of µ (see the above proof and Remark
5).

A trivial and general consequence of Theorem 3.2 is the following:

Corollary 4. If a system as above is uniquely ergodic and its invariant measure µ
satisfies µ(D) = 0, then it is a computable measure.

The main problem in the application of Theorem 3.2 is the requirement that
the invariant measure we are trying to compute be isolated in V . In general the
space of invariant measures in a given dynamical system could be very large (an
infinite dimensional convex subset of PM(X)). To isolate a particular measure we
can restrict and consider a subclass of “regular” measures.

Let us consider the following seminorm:
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‖µ‖α = sup
x∈X,r>0

µ(B(x, r))

rα
.

Proposition 8. If α and K are computable and X is recursively compact then

Vα,K = {µ ∈ PM(X) : ‖µ‖α ≤ K} (3.3)

is recursively compact.

Proof. U = {µ ∈ PM(X) : ‖µ‖α > K} is recursively open. Indeed, ‖µ‖α > K iff
there exists s, r ∈ S × Q such that µ(B(s, r)) > Krα. As µ 7→ µ(B(s, r)) is lower
semi-computable uniformly in s, r, the sets Us,r := {µ : µ(B(s, r)) > Krα} are
uniformly recursively open subsets of PM(X). Hence, U = ∪s,rUs,r is recursively
open.

Now, Vα,K = PM(X) \ U . As PM(X) is recursively compact by Lemma 2.12
and Proposition 4, and U is recursively open, then Proposition 1 item (3) allows us
to conclude.

In Theorem 3.2 we require that µ(D) = 0 hold. This is automatically true in
many examples when the measure is regular and the set D is reasonably small (we
denote by dimH the Hausdorff dimension).

Proposition 9. Let X be recursively compact and T be computable on X \D, with
dimH(D) < ∞. Then any invariant measure isolated in Vα,K with α > dimH(D)
is computable.

Proof. Let us first prove that µ(D) = 0 for all µ ∈ Vα,K . For all ǫ > 0, there is
a covering (B(xi, ri))i of D satisfying

∑

i rα
i < ǫ. Hence µ(D) ≤ ∑

i µB(xi, ri) ≤
2αK

∑

i rα
i ≤ 2αKǫ. As this is true for each ǫ > 0, µ(D) = 0.

The result then follows from the fact that Vα,K is recursively compact and The-
orem 3.2.

Remark 7. Once again, this is uniform in T, α,K.

The above general propositions allow us to obtain as a corollary the computability
of many absolutely continuous invariant measures. For the sake of simplicity, let us
consider maps on the interval.

Proposition 10. If X = [0, 1], T is computable on X \ D, with dimH(D) < 1
and (X, T ) has a unique absolutely continuous invariant measure µ with bounded
density, then µ is computable.

Proof. The result follows from Proposition 9 applied to α = 1 and some K ≥ ‖f‖L∞

where f is the density of µ. Indeed, µ is absolutely continuous with bounded density
if and only if ‖µ‖1 < ∞, and in that case ‖µ‖1 = ‖f‖L∞ , so V1,K contains only one
invariant measure.

Let us prove that µ is absolutely continuous with bounded density if ‖µ‖1 < ∞.
Let l > ‖µ‖1. Let us consider the conditional expectation E[µ|In] of µ to the dyadic
n-th grid In = {[k2−n, (k + 1)2−n), 0 ≤ k ≤ 2n}.

Since ‖µ‖1 = l, this a fortiori implies 0 ≤ E[µ|In] ≤ l a.e. By the Doob’s
martingale convergence theorem it follows that E[µ|In] has an a.e. pointwise and
L1 limit f and f ≤ l a.e.. Since f is bounded then it is a density for µ.

d-dimensional submanifolds of Rn can naturally be endowed with a structure of
computable metric spaces (see [20]). Considering a dyadic grid on Rd and chart
diffeomorphisms it is straightforward to prove, in the same way as before:
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Corollary 5. Let X be a recursively compact d dimensional C1 submanifold of
Rn (with or without boundary). If T is computable on X \ D, with dimH(D) < d
and (X, T ) has a unique absolutely continuous invariant measure µ with bounded
density, then µ is computable.

As it is well known, interesting examples of systems having a unique absolutely
continuous invariant measure (with bounded density as required) are topologically
transitive piecewise expanding maps on the interval or expanding maps on manifolds
(see [36] for precise definitions). Provided that the dynamics is computable we then
have by the above propositions that the absolutely continuous invariant measure is
computable too.

3.3. Unbounded densities. The above results ensure computability of some ab-
solutely continuous invariant measure with bounded density. If we are interested in
situations where the density is unbounded, we can consider a new norm, “killing”
singularities.

Let us hence consider a computable function f : X → R and

‖µ‖f,α = sup
x∈X,r>0

f(x)µ(B(x, r))

rα
.

Propositions 8 and 9 also hold for this norm. If f is such that f(x) = 0 when

limr→0
µ(B(x,r))

rα = ∞ this can let the norm be finite when the density diverges.
As an example, where this can be applied, let us consider the Manneville Pomeau

type maps on the unit interval. These are maps of the type x → x + xz(mod 1).
When 1 < z < 2 the dynamics has a unique absolutely continuous invariant measure
µz having density ez(x) which diverges at the origin as ez(x) ≍ x−z+1 and is
bounded elsewhere (see [26] Section 10 and [36] Section 3 e.g.). If we consider the
norm ‖.‖f,1 with f(x) = x2 we have that ‖µz‖f,1 is finite for each such z. By this
it follows that for each such z the measure µz is computable.

4. Computable systems with uncomputable invariant measures. We have
seen that the technique presented above proves the computability of many abso-
lutely continuous invariant measures which are also physical measures. As we have
seen in the introduction, with other techniques it is possible to prove the com-
putability of other physical measures (axiom A systems e.g., see [20]). This raises
naturally the following question: a computable systems does necessarily have a
computable invariant measure? what about ergodic physical measures?

The following is an easy example showing that this is not true in general even in
quite regular systems, hence the whole question of computing invariant measures
has some subtlety.

Let us consider a system on the unit interval given as follows. Let τ ∈ (0, 1)
be a lower semi-computable real number which is not computable. There is a
computable sequence of rational numbers τi such that supi τi = τ . For each i,
define Ti(x) = max(x, τi) and T (x) =

∑

i≥1 2−iTi. The functions Ti are uniformly
computable so T is also computable.

The system ([0, 1], T ) is hence a computable dynamical system. T is non-
decreasing, and T (x) > x if and only if x < τ . This system has a physical er-
godic invariant measure which is δτ , the Dirac measure placed on τ . The measure
is physical because τ attracts all the interval at its left. Since τ is not computable
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Figure 1. The map T .

then δτ is not computable. We remark that coherently with the previous theorems
δτ is not isolated.

It is easy to prove, by a simple dichotomy argument, that a computable function
from [0, 1] to itself must have a computable fixed point. Hence it is not possible to
construct a system over the interval having no computable invariant measure (we
always have the δ over the fixed point). With some more work we will see that such
an example can be constructed on the circle.

4.1. A computable system without computable invariant measures. We
go further and exhibit a computable dynamical system on a compact space which
has no computable invariant probability measure.

We consider the unit circle S, identified with R/Z. It naturally has a computable
metric structure inherited from that of R. As said before, on S, there is a com-
putable map with no computable invariant probability measure. We construct such
a map T : [0, 1] → R satisfying T (1) = T (0) + 1, and consider its quotient on the
unit circle.

From Proposition 2 we know that there is a non-empty recursively compact set K
containing no computable point. Let U = (0, 1)\K: this is a r.e. open set, so there
are computable sequences ai, bi (i ≥ 1) such that 0 < ai < bi < 1 and U =

⋃

i(ai, bi).
Let us define non-decreasing, uniformly computable functions fi : [0, 1] → [0, 1] such
that fi(x) > x if x ∈ (ai, bi) and fi(x) = x otherwise. For instance, fi(x) = 2x− ai

on [ai,
ai+bi

2 ] and fi(x) = bi on [ai+bi

2 , bi].
As neither 0 nor 1 belongs to K, there is a rational number ǫ > 0 such that

K ⊆ [ǫ, 1−ǫ]. Let us define f : [0, 1] → R by f(x) = x on [ǫ, 1−ǫ], f(x) = 2x−(1−ǫ)
on [1 − ǫ, 1] and f(x) = ǫ on [0, ǫ].

We then define the map T : [0, 1] → R by T (x) = f
2 +

∑

i≥2 2−ifi. T is

computable and non-decreasing, and T (x) > x if and only if x ∈ [0, 1] \ K. As
T (1) = 1 + ǫ

2 = 1 + T (0), we can take the quotient of T modulo 1.

Proposition 11. W = U ∪ [0, ǫ)∪ (1− ǫ, 1] is a strictly invariant set: T−1W = W .

Proof. If x /∈ W then T (x) = x /∈ W .
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Figure 2. The map fi.

Figure 3. The map T .

If x ∈ W then T (x) ∈ W . Indeed, if T (x) /∈ W , T (x) is a fixed point so
T is constant on [x, T (x)] (T is non-decreasing). Let q be any rational num-
ber in (x, T (x)): T (x) = T (q) is then computable, but does not belong to W :
impossible.

Proposition 12. The map T is computable but has no computable invariant prob-
ability measure.

Let x ∈ [0, 1]: the trajectory of x is “non-decreasing” and converges to the first
point above x which is not in U , inf([x, 1] \ U) or to min(K) if x > sup(K). More
precisely, there are two cases: (i) if x /∈ U then x is a fixed point (unstable on the
right), (ii) if x ∈ U then the trajectory of x converges to a lower semi-computable
fixed point (non-computable, as it does not belong to U).

Lemma 4.1. Let µ be an invariant probability measure: then µ(Kc) = 0.

Proof. Obviously µ(0) = 0 because 0 is not periodic. Let (a, b) = (ai, bi) be an
interval from the description of U . Since Tn(a) and Tn(b) tends to some non
computable α (and then are not stationary, as they are computable), the interval
(a, b) is wandering. Hence, by Poincaré recurrence theorem it has null measure.

Proof. (of proposition 12) We can conclude: let µ be a computable invariant proba-
bility measure: by the above lemma its support is then included in the complement
of W . But the support of a computable probability measure always contains com-
putable points (see proposition 7) : contradiction.



COMPUTING INVARIANT MEASURES 19

Actually, the set of invariant measures is exactly the set of measures which give
null weight to W . It is easy to see that in the above system the set of invariant
measures is a convex recursive compact set. Indeed, the function µ → µ(W ) is lower
semi-computable, so {µ : µ(W ) > 0} is a recursive open set. Its complement is then
a recursive compact set, as the whole space of probability measures is a recursive
compact set. The above example hence shows an example of a convex, and recursive
compact set whose extremal points are not computable. We also notice that with
a slightly modification of the various fi (see Fig. 2) it is possible to give also a
smooth system having the same properties as the examples in this section.

We end by remarking that the construction we have presented here has been
adapted by Stephen Simpson (unpublished) to prove the following theorem in re-
verse mathematics:

Theorem 4.2. WKL0 is equivalent over RCA0 to the statement that for every self-
homeomorphism of a compact metric space there exists an invariant probability mea-
sure.

(See also the WKL0 version of the Schauder Fixed Point Theorem, [33, Theorem
IV.7.9].)
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