27,541 research outputs found

    Ontology-Based MEDLINE Document Classification

    Get PDF
    An increasing and overwhelming amount of biomedical information is available in the research literature mainly in the form of free-text. Biologists need tools that automate their information search and deal with the high volume and ambiguity of free-text. Ontologies can help automatic information processing by providing standard concepts and information about the relationships between concepts. The Medical Subject Headings (MeSH) ontology is already available and used by MEDLINE indexers to annotate the conceptual content of biomedical articles. This paper presents a domain-independent method that uses the MeSH ontology inter-concept relationships to extend the existing MeSH-based representation of MEDLINE documents. The extension method is evaluated within a document triage task organized by the Genomics track of the 2005 Text REtrieval Conference (TREC). Our method for extending the representation of documents leads to an improvement of 17% over a non-extended baseline in terms of normalized utility, the metric defined for the task. The SVMlight software is used to classify documents

    Using open access literature to guide full-text query formulation

    Get PDF
    *Background*
Much scientific knowledge is contained in the details of the full-text biomedical literature. Most research in automated retrieval presupposes that the target literature can be downloaded and preprocessed prior to query. Unfortunately, this is not a practical or maintainable option for most users due to licensing restrictions, website terms of use, and sheer volume. Scientific article full-text is increasingly queriable through portals such as PubMed Central, Highwire Press, Scirus, and Google Scholar. However, because these portals only support very basic Boolean queries and full text is so expressive, formulating an effective query is a difficult task for users. We propose improving the formulation of full-text queries by using the open access literature as a proxy for the literature to be searched. We evaluated the feasibility of this approach by building a high-precision query for identifying studies that perform gene expression microarray experiments.

*Methodology and Results*
We built decision rules from unigram and bigram features of the open access literature. Minor syntax modifications were needed to translate the decision rules into the query languages of PubMed Central, Highwire Press, and Google Scholar. We mapped all retrieval results to PubMed identifiers and considered our query results as the union of retrieved articles across all portals. Compared to our reference standard, the derived full-text query found 56% (95% confidence interval, 52% to 61%) of intended studies, and 90% (86% to 93%) of studies identified by the full-text search met the reference standard criteria. Due to this relatively high precision, the derived query was better suited to the intended application than alternative baseline MeSH queries.

*Significance*
Using open access literature to develop queries for full-text portals is an open, flexible, and effective method for retrieval of biomedical literature articles based on article full-text. We hope our approach will raise awareness of the constraints and opportunities in mainstream full-text information retrieval and provide a useful tool for today’s researchers.
&#xa

    Do peers see more in a paper than its authors?

    Get PDF
    Recent years have shown a gradual shift in the content of biomedical publications that is freely accessible, from titles and abstracts to full text. This has enabled new forms of automatic text analysis and has given rise to some interesting questions: How informative is the abstract compared to the full-text? What important information in the full-text is not present in the abstract? What should a good summary contain that is not already in the abstract? Do authors and peers see an article differently? We answer these questions by comparing the information content of the abstract to that in citances-sentences containing citations to that article. We contrast the important points of an article as judged by its authors versus as seen by peers. Focusing on the area of molecular interactions, we perform manual and automatic analysis, and we find that the set of all citances to a target article not only covers most information (entities, functions, experimental methods, and other biological concepts) found in its abstract, but also contains 20% more concepts. We further present a detailed summary of the differences across information types, and we examine the effects other citations and time have on the content of citances

    Using open access literature to guide full-text query formulation

    Get PDF
    *Background* 
Much scientific knowledge is contained in the details of the full-text biomedical literature. Most research in automated retrieval presupposes that the target literature can be downloaded and preprocessed prior to query. Unfortunately, this is not a practical or maintainable option for most users due to licensing restrictions, website terms of use, and sheer volume. Scientific article full-text is increasingly queriable through portals such as PubMed Central, Highwire Press, Scirus, and Google Scholar. However, because these portals only support very basic Boolean queries and full text is so expressive, formulating an effective query is a difficult task for users. We propose improving the formulation of full-text queries by using the open access literature as a proxy for the literature to be searched. We evaluated the feasibility of this approach by building a high-precision query for identifying studies that perform gene expression microarray experiments.
 
*Methodology and Results* 
We built decision rules from unigram and bigram features of the open access literature. Minor syntax modifications were needed to translate the decision rules into the query languages of PubMed Central, Highwire Press, and Google Scholar. We mapped all retrieval results to PubMed identifiers and considered our query results as the union of retrieved articles across all portals. Compared to our reference standard, the derived full-text query found 56% (95% confidence interval, 52% to 61%) of intended studies, and 90% (86% to 93%) of studies identified by the full-text search met the reference standard criteria. Due to this relatively high precision, the derived query was better suited to the intended application than alternative baseline MeSH queries.
 
*Significance* 
Using open access literature to develop queries for full-text portals is an open, flexible, and effective method for retrieval of biomedical literature articles based on article full-text. We hope our approach will raise awareness of the constraints and opportunities in mainstream full-text information retrieval and provide a useful tool for today’s researchers.
&#xa

    Finding Related Publications: Extending the Set of Terms Used to Assess Article Similarity.

    Get PDF
    Recommendation of related articles is an important feature of the PubMed. The PubMed Related Citations (PRC) algorithm is the engine that enables this feature, and it leverages information on 22 million citations. We analyzed the performance of the PRC algorithm on 4584 annotated articles from the 2005 Text REtrieval Conference (TREC) Genomics Track data. Our analysis indicated that the PRC highest weighted term was not always consistent with the critical term that was most directly related to the topic of the article. We implemented term expansion and found that it was a promising and easy-to-implement approach to improve the performance of the PRC algorithm for the TREC 2005 Genomics data and for the TREC 2014 Clinical Decision Support Track data. For term expansion, we trained a Skip-gram model using the Word2Vec package. This extended PRC algorithm resulted in higher average precision for a large subset of articles. A combination of both algorithms may lead to improved performance in related article recommendations

    DutchHatTrick: semantic query modeling, ConText, section detection, and match score maximization

    Get PDF
    This report discusses the collaborative work of the ErasmusMC, University of Twente, and the University of Amsterdam on the TREC 2011 Medical track. Here, the task is to retrieve patient visits from the University of Pittsburgh NLP Repository for 35 topics. The repository consists of 101,711 patient reports, and a patient visit was recorded in one or more reports
    corecore