1 research outputs found

    Semi-supervised incremental learning with few examples for discovering medical association rules

    Get PDF
    Background: Association Rules are one of the main ways to represent structural patterns underlying raw data. They represent dependencies between sets of observations contained in the data. The associations established by these rules are very useful in the medical domain, for example in the predictive health field. Classic algorithms for association rule mining give rise to huge amounts of possible rules that should be filtered in order to select those most likely to be true. Most of the proposed techniques for these tasks are unsupervised. However, the accuracy provided by unsupervised systems is limited. Conversely, resorting to annotated data for training supervised systems is expensive and time-consuming. The purpose of this research is to design a new semi-supervised algorithm that performs like supervised algorithms but uses an affordable amount of training data. Methods: In this work we propose a new semi-supervised data mining model that combines unsupervised techniques (Fisher's exact test) with limited supervision. Starting with a small seed of annotated data, the model improves results (F-measure) obtained, using a fully supervised system (standard supervised ML algorithms). The idea is based on utilising the agreement between the predictions of the supervised system and those of the unsupervised techniques in a series of iterative steps. Results: The new semi-supervised ML algorithm improves the results of supervised algorithms computed using the F-measure in the task of mining medical association rules, but training with an affordable amount of manually annotated data. Conclusions: Using a small amount of annotated data (which is easily achievable) leads to results similar to those of a supervised system. The proposal may be an important step for the practical development of techniques for mining association rules and generating new valuable scientific medical knowledge.This work has been partially supported by projects DOTT-HEALTH (PID2019-106942RB-C32, MCI/AEI/FEDER, UE). (Design of the study. Analysis and interpretation of data) and EXTRAE II (IMIENS 2019). (Design of the study. Analysis and interpretation of data. HUF corpus manual tagging. Writing of the manuscript), PI18CIII/00004 “Infobanco para uso secundario de datos basado en estándares de tecnología y conocimiento: implementación y evaluación de un infobanco de salud para CoRIS (Info-bank for the secondary use of data based on technology and knowledge standards: implementation and evaluation of a health info-bank for CoRIS) – SmartPITeS” (Data collection and HUF corpus construction), and PI18CIII/00019 - PI18/00890 - PI18/00981 “Arquitectura normalizada de datos clínicos para la generación de infobancos y su uso secundario en investigación: solución tecnológica (Clinical data normalized architecture for the genaration of info-banks and their secondary use in research: technological solution) – CAMAMA 4” (Data collection and HUF corpus construction) from Fondo de Investigación Sanitaria (FIS) Plan Nacional de I+D+i.S
    corecore