1,929 research outputs found

    CSP channels for CAN-bus connected embedded control systems

    Get PDF
    Closed loop control system typically contains multitude of sensors and actuators operated simultaneously. So they are parallel and distributed in its essence. But when mapping this parallelism to software, lot of obstacles concerning multithreading communication and synchronization issues arise. To overcome this problem, the CT kernel/library based on CSP algebra has been developed. This project (TES.5410) is about developing communication extension to the CT library to make it applicable in distributed systems. Since the library is tailored for control systems, properties and requirements of control systems are taken into special consideration. Applicability of existing middleware solutions is examined. A comparison of applicable fieldbus protocols is done in order to determine most suitable ones and CAN fieldbus is chosen to be first fieldbus used. Brief overview of CSP and existing CSP based libraries is given. Middleware architecture is proposed along with few novel ideas

    A Dual-Rate Model Predictive Controller for Fieldbus Based Distributed Control Systems

    Get PDF
    In modern Distributed Control Systems (DCS), an industrial computer network protocol known as fieldbus is used in chemical, petro-chemical and other process industries for real-time communication between digital controllers, sensors, actuators and other smart devices. In a closed-loop digital control system, data is transferred from sensor to controller and controller to actuator cyclically in a timely but discontinuous fashion at a specific rate known as sampling-rate or macrocycle through fieldbus. According to the current trend of fieldbus technology, in most industrial control systems, the sampling-rate or macrocycle is fixed at the time of system configuration. This fixed sampling-rate makes it impossible to use a multi-rate controller that can automatically switch between multiple sampling-rates at run time to gain some advantages, such as network bandwidth conservation, energy conservation and reduction of mechanical wear in actuators. This thesis is concerned about design and implementation of a dual-rate controller which automatically switches between the two sampling-rates depending on system’s dynamic state. To be more precise, the controller uses faster sampling-rate when the process goes through transient states and slower sampling-rate when the process is at steady-state operation. The controller is based on a Model Predictive Control (MPC) algorithm and a Kalman filter based observer. This thesis starts with theoretical development of the dual-rate controller design. Subsequently, the developed controller is implemented on a Siemens PCS 7 system for controlling a physical process. The investigation has concluded that this control strategy can indeed lead to conservation of network bandwidth, energy savings in field devices and reduction of wear in mechanical actuators in fieldbus based distributed control systems

    Hard Real-Time Networking on Firewire

    Get PDF
    This paper investigates the possibility of using standard, low-cost, widely used FireWire as a new generation fieldbus medium for real-time distributed control applications. A real-time software subsystem, RT-FireWire was designed that can, in combination with Linux-based real-time operating system, provide hard real-time communication over FireWire. In addition, a high-level module that can emulate Ethernet over RT-FireWire was implemented. This additional module enables existing IP-based real-time communication frameworks to work on top of FireWire. The real-time behavior of RT-FireWire was demonstrated with a simple control setup. Furthermore, an outlook of the future development on RT-FireWire is given

    Industrial Fieldbus Improvements in Power Distribution and Conducted Noise Immunity With No Extra Costs

    Get PDF
    Industrial distributed control continues the move toward networks at all levels. At lower levels, control networks provide flexibility, reliability, and low cost, although perhaps the simplest but most important advantage is the reduced volume of wiring. Powered fieldbuses offer particular notable benefits in system wiring simplification. Nevertheless, very few papers are dealing with the potentials and limitations in power distribution through the bus cable. Only a few of the existent fieldbus standards consider this possibility but often simply as an option without enough technical specifications. In fact, nobody talks about it, but power distribution through the bus and conducted noise disturbances are strongly related. This paper points out and analyzes these limitations and proposes a new low-cost fieldbus physical layer that enlarges power distribution capability of the bus and improves system robustness. We show an industrial application on water desalination plants and the very good results obtained owing to the fieldbus. Finally, we present electromagnetic compatibility test results that verify improvements against electrical fast transients on the sensor/actuator connection side as disturbances usually encountered in harsh-environment industrial applications

    CAN Fieldbus Communication in the CSP-based CT Library

    Get PDF
    In closed-loop control systems several realworld entities are simultaneously communicated to through a multitude of spatially distributed sensors and actuators. This intrinsic parallelism and complexity motivates implementing control software in the form of concurrent processes deployed on distributed hardware architectures. A CSP based occam-like architecture seems to be the most convenient for such a purpose. Many, often conflicting, requirements make design and implementation of distributed real-time control systems an extremely difficult task. The scope of this paper is limited to achieving safe and real-time communication over a CAN fieldbus for an\ud existing CSP-based framework

    The PLC: a logical development

    Get PDF
    Programmable Logic Controllers (PLCs) have been used to control industrial processes and equipment for over 40 years, having their first commercially recognised application in 1969. Since then there have been enormous changes in the design and application of PLCs, yet developments were evolutionary rather than radical. The flexibility of the PLC does not confine it to industrial use and it has been used for disparate non-industrial control applications . This article reviews the history, development and industrial applications of the PLC

    Real-time and fault tolerance in distributed control software

    Get PDF
    Closed loop control systems typically contain multitude of spatially distributed sensors and actuators operated simultaneously. So those systems are parallel and distributed in their essence. But mapping this parallelism onto the given distributed hardware architecture, brings in some additional requirements: safe multithreading, optimal process allocation, real-time scheduling of bus and network resources. Nowadays, fault tolerance methods and fast even online reconfiguration are becoming increasingly important. All those often conflicting requirements, make design and implementation of real-time distributed control systems an extremely difficult task, that requires substantial knowledge in several areas of control and computer science. Although many design methods have been proposed so far, none of them had succeeded to cover all important aspects of the problem at hand. [1] Continuous increase of production in embedded market, makes a simple and natural design methodology for real-time systems needed more then ever
    • 

    corecore