2,932 research outputs found

    A Bio-Inspired Two-Layer Mixed-Signal Flexible Programmable Chip for Early Vision

    Get PDF
    A bio-inspired model for an analog programmable array processor (APAP), based on studies on the vertebrate retina, has permitted the realization of complex programmable spatio-temporal dynamics in VLSI. This model mimics the way in which images are processed in the visual pathway, what renders a feasible alternative for the implementation of early vision tasks in standard technologies. A prototype chip has been designed and fabricated in 0.5 ÎŒm CMOS. It renders a computing power per silicon area and power consumption that is amongst the highest reported for a single chip. The details of the bio-inspired network model, the analog building block design challenges and trade-offs and some functional tests results are presented in this paper.Office of Naval Research (USA) N-000140210884European Commission IST-1999-19007Ministerio de Ciencia y TecnologĂ­a TIC1999-082

    Innovative teaching of IC design and manufacture using the Superchip platform

    No full text
    In this paper we describe how an intelligent chip architecture has allowed a large cohort of undergraduate students to be given effective practical insight into IC design by designing and manufacturing their own ICs. To achieve this, an efficient chip architecture, the “Superchip”, has been developed, which allows multiple student designs to be fabricated on a single IC, and encapsulated in a standard package without excessive cost in terms of time or resources. We demonstrate how the practical process has been tightly coupled with theoretical aspects of the degree course and how transferable skills are incorporated into the design exercise. Furthermore, the students are introduced at an early stage to the key concepts of team working, exposure to real deadlines and collaborative report writing. This paper provides details of the teaching rationale, design exercise overview, design process, chip architecture and test regime

    Using Rapid Prototyping in Computer Architecture Design Laboratories

    Get PDF
    This paper describes the undergraduate computer architecture courses and laboratories introduced at Georgia Tech during the past two years. A core sequence of six required courses for computer engineering students has been developed. In this paper, emphasis is placed upon the new core laboratories which utilize commercial CAD tools, FPGAs, hardware emulators, and a VHDL based rapid prototyping approach to simulate, synthesize, and implement prototype computer hardware

    Multi-COBS: A Novel Algorithm for Byte Stuffing at High Throughput

    Get PDF
    Framing methods are used to break a data stream into packets in most digital communications. The use of a reserved symbol to denote the frame boundaries is a popular practice. This end-of-frame (EOF) marker should be removed from the packet content in a reversible manner. Many strategies, such as the bit and byte stuffing processes employed by high-level data link control (HDLC) and Point-to-Point Protocol (PPP), or the Consistent Overhead Byte Stuffing (COBS), have been devised to perform this goal. These bit and byte stuffing algorithms remove the reserved EOF marker from the packet payload and replace it with some extra information that can be used to undo the action later. The amount of data added is called overhead and is a figure-of-merit of such algorithms, together with the encoding and decoding speed. Multi-COBS, a new byte stuffing algorithm, is presented in this paper. Multi-COBS provides concurrent encoding and decoding, resulting in a performance improvement of factor four or eight in common word-based digital architectures while delivering an average and worst-case overhead equivalent to the state-of-the-art. On the reference 28-nanometer field programmable gate array (FPGA) (Artix-7), Multi-COBS achieves a throughput of 6.6 Gbps, instead of 1.7 Gbps of COBS. Thanks to its parallel elaboration capability, Multi-COBS is ideal for digital systems built in programmable logic as well as modern computers

    Introduction of programmable logic controller in industrial engineering curriculum

    Get PDF
    Recent trends in process control and industrial automation scenarios have resulted in the emergence of many pioneering techniques that have revolutionized the manufacturing industry. In order to maintain quality and precision, advances have been associated with the increasing use of microprocessors in process control applications. Most of the industrial process control systems utilize Programmable Logic Controllers (PLC). Also due to the increase in internet usage and recent innovations in PLC software, remote monitoring and PLC control of process through the internet is also a recent trend. This thesis presents course/lab material for integration in the Industrial Engineering curriculum. The course/lab content was designed to improve the student\u27s knowledge and to broaden the industrial engineering curriculum at West Virginia University (WVU). This thesis proposes the use of inexpensive T100MD+ PLCs. A traffic light control system was developed to introduce the fundamental concepts of Boolean algebra and real-time control. A series of control exercises can be carried on the traffic light system. A temperature sensitive system was also developed. Students can test various PID control strategies on this hardware/software platform. Students will also have the ability to control the process via the internet

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability
    • 

    corecore