640,279 research outputs found

    Intracell interference characterization and cluster interference for D2D communication

    Get PDF
    The homogeneous spatial Poisson point process (SPPP) is widely used for spatial modeling of mobile terminals (MTs). This process is characterized by a homogeneous distribution, complete spatial independence, and constant intensity measure. However, it is intuitive to understand that the locations of MTs are neither homogeneous, due to inhomogeneous terrain, nor independent, due to homophilic relations. Moreover, the intensity is not constant due to mobility. Therefore, assuming an SPPP for spatial modeling is too simplistic, especially for modeling realistic emerging device-centric frameworks such as device-to-device (D2D) communication. In this paper, assuming inhomogeneity, positive spatial correlation, and random intensity measure, we propose a doubly stochastic Poisson process, a generalization of the homogeneous SPPP, to model D2D communication. To this end, we assume a permanental Cox process (PCP) and propose a novel Euler-Characteristic-based approach to approximate the nearest-neighbor distribution function. We also propose a threshold and spatial distances from an excursion set of a chi-square random field as interference control parameters for different cluster sizes. The spatial distance of the clusters is incorporated into a Laplace functional of a PCP to analyze the average coverage probability of a cellular user. A closed-form approximation of the spatial summary statistics is in good agreement with empirical results, and its comparison with an SPPP authenticates the correlation modeling of D2D nodes

    Bayesian mapping of brain regions using compound Markov random field priors

    Get PDF
    Human brain mapping, i.e. the detection of functional regions and their connections, has experienced enormous progress through the use of functional magnetic resonance imaging (fMRI). The massive spatio-temporal data sets generated by this imaging technique impose challenging problems for statistical analysis. Many approaches focus on adequate modeling of the temporal component. Spatial aspects are often considered only in a separate postprocessing step, if at all, or modeling is based on Gaussian random fields. A weakness of Gaussian spatial smoothing is possible underestimation of activation peaks or blurring of sharp transitions between activated and non-activated regions. In this paper we suggest Bayesian spatio-temporal models, where spatial adaptivity is improved through inhomogeneous or compound Markov random field priors. Inference is based on an approximate MCMC technique. Performance of our approach is investigated through a simulation study, including a comparison to models based on Gaussian as well as more robust spatial priors in terms of pixelwise and global MSEs. Finally we demonstrate its use by an application to fMRI data from a visual stimulation experiment for assessing activation in visual cortical areas

    A General Spatio-Temporal Clustering-Based Non-local Formulation for Multiscale Modeling of Compartmentalized Reservoirs

    Full text link
    Representing the reservoir as a network of discrete compartments with neighbor and non-neighbor connections is a fast, yet accurate method for analyzing oil and gas reservoirs. Automatic and rapid detection of coarse-scale compartments with distinct static and dynamic properties is an integral part of such high-level reservoir analysis. In this work, we present a hybrid framework specific to reservoir analysis for an automatic detection of clusters in space using spatial and temporal field data, coupled with a physics-based multiscale modeling approach. In this work a novel hybrid approach is presented in which we couple a physics-based non-local modeling framework with data-driven clustering techniques to provide a fast and accurate multiscale modeling of compartmentalized reservoirs. This research also adds to the literature by presenting a comprehensive work on spatio-temporal clustering for reservoir studies applications that well considers the clustering complexities, the intrinsic sparse and noisy nature of the data, and the interpretability of the outcome. Keywords: Artificial Intelligence; Machine Learning; Spatio-Temporal Clustering; Physics-Based Data-Driven Formulation; Multiscale Modelin

    Magnetically assisted self-injection and radiation generation for plasma based acceleration

    Get PDF
    It is shown through analytical modeling and numerical simulations that external magnetic fields can relax the self-trapping thresholds in plasma based accelerators. In addition, the transverse location where self-trapping occurs can be selected by adequate choice of the spatial profile of the external magnetic field. We also find that magnetic-field assisted self-injection can lead to the emission of betatron radiation at well defined frequencies. This controlled injection technique could be explored using state-of-the-art magnetic fields in current/next generation plasma/laser wakefield accelerator experiments.Comment: 7 pages, 4 figures, accepted for publication in Plasma Physics and Controlled Fusio
    corecore