228 research outputs found

    Respiration-Induced Intraorgan Deformation of the Liver: Implications for Treatment Planning in Patients Treated With Fiducial Tracking.

    Get PDF
    Stereotactic body radiation therapy is a well-tolerated modality for the treatment of primary and metastatic liver lesions, and fiducials are often used as surrogates for tumor tracking during treatment. We evaluated respiratory-induced liver deformation by measuring the rigidity of the fiducial configuration during the breathing cycle. Seventeen patients, with 18 distinct treatment courses, were treated with stereotactic body radiosurgery using multiple fiducials. Liver deformation was empirically quantified by measuring the intrafiducial distances at different phases of respiration. Data points were collected at the 0%, 50%, and 100% inspiration points, and the distance between each pair of fiducials was measured at the 3 phases. The rigid body error was calculated as the maximum difference in the intrafiducial distances. Liver disease was calculated with Child-Pugh score using laboratory values within 3 months of initiation of treatment. A peripheral fiducial was defined as within 1.5 cm of the liver edge, and all other fiducials were classified as central. For 5 patients with only peripheral fiducials, the fiducial configuration had more deformation (average maximum rigid body error 7.11 mm, range: 1.89-11.35 mm) when compared to patients with both central and peripheral and central fiducials only (average maximum rigid body error 3.36 mm, range: 0.5-9.09 mm, P = .037). The largest rigid body errors (11.3 and 10.6 mm) were in 2 patients with Child-Pugh class A liver disease and multiple peripheral fiducials. The liver experiences internal deformation, and the fiducial configuration should not be assumed to act as a static structure. We observed greater deformation at the periphery than at the center of the liver. In our small data set, we were not able to identify cirrhosis, which is associated with greater rigidity of the liver, as predictive for deformation. Treatment planning based only on fiducial localization must take potential intraorgan deformation into account

    Radical stereotactic radiosurgery with real-time tumor motion tracking in the treatment of small peripheral lung tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent developments in radiotherapeutic technology have resulted in a new approach to treating patients with localized lung cancer. We report preliminary clinical outcomes using stereotactic radiosurgery with real-time tumor motion tracking to treat small peripheral lung tumors.</p> <p>Methods</p> <p>Eligible patients were treated over a 24-month period and followed for a minimum of 6 months. Fiducials (3–5) were placed in or near tumors under CT-guidance. Non-isocentric treatment plans with 5-mm margins were generated. Patients received 45–60 Gy in 3 equal fractions delivered in less than 2 weeks. CT imaging and routine pulmonary function tests were completed at 3, 6, 12, 18, 24 and 30 months.</p> <p>Results</p> <p>Twenty-four consecutive patients were treated, 15 with stage I lung cancer and 9 with single lung metastases. Pneumothorax was a complication of fiducial placement in 7 patients, requiring tube thoracostomy in 4. All patients completed radiation treatment with minimal discomfort, few acute side effects and no procedure-related mortalities. Following treatment transient chest wall discomfort, typically lasting several weeks, developed in 7 of 11 patients with lesions within 5 mm of the pleura. Grade III pneumonitis was seen in 2 patients, one with prior conventional thoracic irradiation and the other treated with concurrent Gefitinib. A small statistically significant decline in the mean % predicted DLCO was observed at 6 and 12 months. All tumors responded to treatment at 3 months and local failure was seen in only 2 single metastases. There have been no regional lymph node recurrences. At a median follow-up of 12 months, the crude survival rate is 83%, with 3 deaths due to co-morbidities and 1 secondary to metastatic disease.</p> <p>Conclusion</p> <p>Radical stereotactic radiosurgery with real-time tumor motion tracking is a promising well-tolerated treatment option for small peripheral lung tumors.</p

    Expanding the use of real-time electromagnetic tracking in radiation oncology.

    Get PDF
    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT) for both inter- and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    Complications Associated with the Percutaneous Insertion of Fiducial Markers in the Thorax

    Get PDF
    Radiosurgery requires precise lesion localization. Fiducial markers enable lesion tracking, but complications from insertion may occur. The purpose of this study was to describe complications of fiducial marker insertion into pulmonary lesions. Clinical and imaging records of 28 consecutive patients with 32 lung nodules or masses who underwent insertion of a total of 59 fiducial markers before radiosurgery were retrospectively reviewed. Eighteen patients (67%) developed a pneumothorax, and six patients (22%) required a chest tube. The rates of pneumothorax were 82% and 40%, respectively, when 18-gauge and 19-gauge needles were used for marker insertion (P = 0.01). Increased rate of pneumothorax was also associated with targeting smaller lesions (P = 0.03) and tumors not in contact with the pleural surface (P = 0.04). A total of 11 fiducials (19%) migrated after insertion into the pleural space (10 markers) or into the airway (1 marker). Migration was associated with shorter distances from pleura to the marker deposition site (P = 0.04) and with fiducial placement outside of the target lesion (P = 0.03). Fiducial marker placement into lung lesions is associated with a high risk of pneumothorax and a risk of fiducial migration
    corecore