1,724 research outputs found

    Unsupervised Knowledge-Transfer for Learned Image Reconstruction

    Get PDF
    Deep learning-based image reconstruction approaches have demonstrated impressive empirical performance in many imaging modalities. These approaches generally require a large amount of high-quality training data, which is often not available. To circumvent this issue, we develop a novel unsupervised knowledge-transfer paradigm for learned iterative reconstruction within a Bayesian framework. The proposed approach learns an iterative reconstruction network in two phases. The first phase trains a reconstruction network with a set of ordered pairs comprising of ground truth images and measurement data. The second phase fine-tunes the pretrained network to the measurement data without supervision. Furthermore, the framework delivers uncertainty information over the reconstructed image. We present extensive experimental results on low-dose and sparse-view computed tomography, showing that the proposed framework significantly improves reconstruction quality not only visually, but also quantitatively in terms of PSNR and SSIM, and is competitive with several state-of-the-art supervised and unsupervised reconstruction techniques

    NeXtQSM -- A complete deep learning pipeline for data-consistent quantitative susceptibility mapping trained with hybrid data

    Full text link
    Deep learning based Quantitative Susceptibility Mapping (QSM) has shown great potential in recent years, obtaining similar results to established non-learning approaches. Many current deep learning approaches are not data consistent, require in vivo training data or solve the QSM problem in consecutive steps resulting in the propagation of errors. Here we aim to overcome these limitations and developed a framework to solve the QSM processing steps jointly. We developed a new hybrid training data generation method that enables the end-to-end training for solving background field correction and dipole inversion in a data-consistent fashion using a variational network that combines the QSM model term and a learned regularizer. We demonstrate that NeXtQSM overcomes the limitations of previous deep learning methods. NeXtQSM offers a new deep learning based pipeline for computing quantitative susceptibility maps that integrates each processing step into the training and provides results that are robust and fast

    Affine Transformation Edited and Refined Deep Neural Network for Quantitative Susceptibility Mapping

    Full text link
    Deep neural networks have demonstrated great potential in solving dipole inversion for Quantitative Susceptibility Mapping (QSM). However, the performances of most existing deep learning methods drastically degrade with mismatched sequence parameters such as acquisition orientation and spatial resolution. We propose an end-to-end AFfine Transformation Edited and Refined (AFTER) deep neural network for QSM, which is robust against arbitrary acquisition orientation and spatial resolution up to 0.6 mm isotropic at the finest. The AFTER-QSM neural network starts with a forward affine transformation layer, followed by an Unet for dipole inversion, then an inverse affine transformation layer, followed by a Residual Dense Network (RDN) for QSM refinement. Simulation and in-vivo experiments demonstrated that the proposed AFTER-QSM network architecture had excellent generalizability. It can successfully reconstruct susceptibility maps from highly oblique and anisotropic scans, leading to the best image quality assessments in simulation tests and suppressed streaking artifacts and noise levels for in-vivo experiments compared with other methods. Furthermore, ablation studies showed that the RDN refinement network significantly reduced image blurring and susceptibility underestimation due to affine transformations. In addition, the AFTER-QSM network substantially shortened the reconstruction time from minutes using conventional methods to only a few seconds

    Harmonization-enriched domain adaptation with light fine-tuning for multiple sclerosis lesion segmentation

    Full text link
    Deep learning algorithms utilizing magnetic resonance (MR) images have demonstrated cutting-edge proficiency in autonomously segmenting multiple sclerosis (MS) lesions. Despite their achievements, these algorithms may struggle to extend their performance across various sites or scanners, leading to domain generalization errors. While few-shot or one-shot domain adaptation emerges as a potential solution to mitigate generalization errors, its efficacy might be hindered by the scarcity of labeled data in the target domain. This paper seeks to tackle this challenge by integrating one-shot adaptation data with harmonized training data that incorporates labels. Our approach involves synthesizing new training data with a contrast akin to that of the test domain, a process we refer to as "contrast harmonization" in MRI. Our experiments illustrate that the amalgamation of one-shot adaptation data with harmonized training data surpasses the performance of utilizing either data source in isolation. Notably, domain adaptation using exclusively harmonized training data achieved comparable or even superior performance compared to one-shot adaptation. Moreover, all adaptations required only minimal fine-tuning, ranging from 2 to 5 epochs for convergence

    DeDA: Deep Directed Accumulator

    Full text link
    Chronic active multiple sclerosis lesions, also termed as rim+ lesions, can be characterized by a hyperintense rim at the edge of the lesion on quantitative susceptibility maps. These rim+ lesions exhibit a geometrically simple structure, where gradients at the lesion edge are radially oriented and a greater magnitude of gradients is observed in contrast to rim- (non rim+) lesions. However, recent studies have shown that the identification performance of such lesions remains unsatisfied due to the limited amount of data and high class imbalance. In this paper, we propose a simple yet effective image processing operation, deep directed accumulator (DeDA), that provides a new perspective for injecting domain-specific inductive biases (priors) into neural networks for rim+ lesion identification. Given a feature map and a set of sampling grids, DeDA creates and quantizes an accumulator space into finite intervals, and accumulates feature values accordingly. This DeDA operation is a generalized discrete Radon transform and can also be regarded as a symmetric operation to the grid sampling within the forward-backward neural network framework, the process of which is order-agnostic, and can be efficiently implemented with the native CUDA programming. Experimental results on a dataset with 177 rim+ and 3986 rim- lesions show that 10.1% of improvement in a partial (false positive rate<0.1) area under the receiver operating characteristic curve (pROC AUC) and 10.2% of improvement in an area under the precision recall curve (PR AUC) can be achieved respectively comparing to other state-of-the-art methods. The source code is available online at https://github.com/tinymilky/DeDAComment: 18 pages, 3 Tables and 4 figure
    • …
    corecore