71,505 research outputs found

    Transition from glass to graphite in manufacture of composite aircraft structure

    Get PDF
    The transition from fiberglass reinforced plastic composites to graphite reinforced plastic composites is described. Structural fiberglass design and manufacturing background are summarized. How this experience provides a technology base for moving into graphite composite secondary structure and then to composite primary structure is considered. The technical requirements that must be fulfilled in the transition from glass to graphite composite structure are also included

    Evaluation of Materials and Concepts for Aircraft Fire Protection

    Get PDF
    Woven fiberglass fluted-core simulated aircraft interior panels were flame tested and structurally evaluated against the Boeing 747 present baseline interior panels. The NASA-defined panels, though inferior on a strength-to-weight basis, showed better structural integrity after flame testing, due to the woven fiberglass structure

    Thermal Conductivity of Thermally-Isolating Polymeric and Composite Structural Support Materials Between 0.3 and 4 K

    Full text link
    We present measurements of the low-temperature thermal conductivity of a number of polymeric and composite materials from 0.3 to 4 K. The materials measured are Vespel SP-1, Vespel SP-22, unfilled PEEK, 30% carbon fiber-filled PEEK, 30% glass-filled PEEK, carbon fiber Graphlite composite rod, Torlon 4301, G-10/FR-4 fiberglass, pultruded fiberglass composite, Macor ceramic, and graphite rod. These materials have moderate to high elastic moduli making them useful for thermally-isolating structural supports.Comment: Accepted for publication in the journal Cryogenic

    Flight service evaluation of PRD-49/epoxy composite panels in wide-bodied commercial transport aircraft

    Get PDF
    Fairing panels were fabricated to evaluate the fabrication characteristics and flight service performance of PRD-49 (Kevlar-49) a composite reinforcing material and to compare it with the fiberglass which is currently in use. Panel configurations were selected to evaluate the PRD-49 with two resin matrix materials in sandwich and solid laminate construction. Left and right hand versions of these configurations were installed on L-1011's which will accumulate approximately 3000 flight hours per year per aircraft. The direct substitution of PRD-49 for fiberglass produced a twenty-six percent weight reduction on the panel configurations. Examination of these panels revealed that there was no visible difference between the PRD-49 and adjacent fiberglass panels

    Fiberglass container shells form contamination-free storage units

    Get PDF
    Interchangeable molded fiberglass shells are locked together to form storage units of various depths. These units can hold components weighing 1500 pounds, are easily transportable, and protect contents from contamination

    Evaluation of a subscale internally insulated fiber-glass propellant tank for liquid hydrogen

    Get PDF
    Subscale internally insulated fiberglass reinforced plastics, propellant tank for liquid hydroge

    Effect of low-stiffness closeout overwrap on rocket thrust-chamber life

    Get PDF
    Three rocket thrust chambers with copper liners and a thrust level of 20.9 kN were cyclically test fired to failure. Two of the liners were made from oxygen free, high conductivity (OFHC) copper and from annealed Amzirc. The milled coolant channels were closed out with a thin copper closeout over which a fiberglass composite was wrapped to provide hoop strength only. Experimental data are presented, along with the results of a preliminary analysis that was performed before fabrication to evaluate the life extending potential of a thin copper closeout with a fiberglass overwrap

    Ultrasonic evaluation of high voltage circuit boards

    Get PDF
    Preliminary observations indicate that an ultrasonic scanning technique may be useful as a quick, low cost, nondestructive method for judging the quality of circuit board materials for high voltage applications. Corona inception voltage tests were conducted on fiberglass-epoxy and fiberglass-polyimide high pressure laminates from 20 to 140 C. The same materials were scanned ultrasonically by utilizing the single transducer, through-transmission technique with reflector plate, and recording variations in ultrasonic energy transmitted through the board thickness. A direct relationship was observed between ultrasonic transmission level and corona inception voltage. The ultrasonic technique was subsequently used to aid selection of high quality circuit boards for the Communications Technology Satellite

    Tiltrotor research aircraft composite blade repairs: Lessons learned

    Get PDF
    The XV-15, N703NA Tiltrotor Research Aircraft located at the NASA Ames Research Center, Moffett Field, California, currently uses a set of composite rotor blades of complex shape known as the advanced technology blades (ATBs). The main structural element of the blades is a D-spar constructed of unidirectional, angled fiberglass/graphite, with the aft fairing portion of the blades constructed of a fiberglass cross-ply skin bonded to a Nomex honeycomb core. The blade tip is a removable laminate shell that fits over the outboard section of the spar structure, which contains a cavity to retain balance weights. Two types of tip shells are used for research. One is highly twisted (more than a conventional helicopter blade) and has a hollow core constructed of a thin Nomex-honeycomb-and-fiberglass-skin sandwich; the other is untwisted with a solid Nomex honeycomb core and a fiberglass cross-ply skin. During initial flight testing of the blades, a number of problems in the composite structure were encountered. These problems included debonding between the fiberglass skin and the honeycomb core, failure of the honeycomb core, failures in fiberglass splices, cracks in fiberglass blocks, misalignment of mated composite parts, and failures of retention of metal fasteners. Substantial time was spent in identifying and repairing these problems. Discussed here are the types of problems encountered, the inspection procedures used to identify each problem, the repairs performed on the damaged or flawed areas, the level of criticality of the problems, and the monitoring of repaired areas. It is hoped that this discussion will help designers, analysts, and experimenters in the future as the use of composites becomes more prevalent

    Filament winding technique produces strong lightweight oxygen tanks

    Get PDF
    Fiberglass is wound in three winding and cure sequences with first two followed by grit blasting of surface before final step. Result is uniformly stressed metal liner assembly with excellent structural characteristics
    corecore