58 research outputs found

    Feynman integrals via hyperlogarithms

    Full text link
    This talk summarizes recent developments in the evaluation of Feynman integrals using hyperlogarithms. We discuss extensions of the original method, new results that were obtained with this approach and point out current problems and future directions.Comment: 8 pages, 5 figures, Proceedings of "Loops & Legs 2014", Weimar (Germany), April 27 -- May

    Numerical evaluation of two-loop integrals with pySecDec

    Full text link
    We describe the program pySecDec, which factorises endpoint singularities from multi-dimensional parameter integrals and can serve to calculate integrals occurring in higher order perturbative calculations numerically. We focus on the new features and on frequently asked questions about the usage of the program.Comment: 11 pages, to appear in the proceedings of the HiggsTools Final Meeting, IPPP, University of Durham, UK, September 201

    Numerical evaluation of multi-loop integrals

    Full text link
    We present updates on the development of pySecDec, a toolbox to numerically evaluate parameter integrals in the context of dimensional regularization. We discuss difficulties with loop integrals in the special kinematic condition where the squared momentum of a leg is equal to the squared mass of a propagator. We further discuss some features of a Quasi Monte Carlo (QMC) integrator that can optionally run on Graphics Processing Units (GPUs).Comment: 10 pages, 5 figures, contribution to the proceedings of Loops and Legs 2018, St. Goar, German

    Towards a four-loop form factor

    Full text link
    The four-loop, two-point form factor contains the first non-planar correction to the lightlike cusp anomalous dimension. This anomalous dimension is a universal function which appears in many applications. Its planar part in N = 4 SYM is known, in principle, exactly from AdS/CFT and integrability while its non-planar part has been conjectured to vanish. The integrand of the form factor of the stress-tensor multiplet in N = 4 SYM including the non-planar part was obtained in previous work. We parametrise the difficulty of integrating this integrand. We have obtained a basis of master integrals for all integrals in the four-loop, two-point class in two ways. First, we computed an IBP reduction of the integrand of the N = 4 form factor using massive computer algebra (Reduze). Second, we computed a list of master integrals based on methods of the Mint package, suitably extended using Macaulay2 / Singular. The master integrals obtained in both ways are consistent with some minor exceptions. The second method indicates that the master integrals apply beyond N = 4 SYM, in particular to QCD. The numerical integration of several of the master integrals will be reported and remaining obstacles will be outlinedComment: 9 Pages, Radcor/Loopfest 2015 Proceeding

    An Analytic Result for the Two-Loop Hexagon Wilson Loop in N = 4 SYM

    Full text link
    In the planar N=4 supersymmetric Yang-Mills theory, the conformal symmetry constrains multi-loop n-edged Wilson loops to be basically given in terms of the one-loop n-edged Wilson loop, augmented, for n greater than 6, by a function of conformally invariant cross ratios. We identify a class of kinematics for which the Wilson loop exhibits exact Regge factorisation and which leave invariant the analytic form of the multi-loop n-edged Wilson loop. In those kinematics, the analytic result for the Wilson loop is the same as in general kinematics, although the computation is remarkably simplified with respect to general kinematics. Using the simplest of those kinematics, we have performed the first analytic computation of the two-loop six-edged Wilson loop in general kinematics.Comment: 17 pages. Extended discussion on how the QMRK limit is taken. Version accepted by JHEP. A text file containing the Mathematica code with the analytic expression for the 6-point remainder function is include

    Computation of H→ggH\to gg in FDH and DRED: renormalization, operator mixing, and explicit two-loop results

    Get PDF
    The H→ggH\to gg amplitude relevant for Higgs production via gluon fusion is computed in the four-dimensional helicity scheme (FDH) and in dimensional reduction (DRED) at the two-loop level. The required renormalization is developed and described in detail, including the treatment of evanescent ϵ\epsilon-scalar contributions. In FDH and DRED there are additional dimension-5 operators generating the HggH g g vertices, where gg can either be a gluon or an ϵ\epsilon-scalar. An appropriate operator basis is given and the operator mixing through renormalization is described. The results of the present paper provide building blocks for further computations, and they allow to complete the study of the infrared divergence structure of two-loop amplitudes in FDH and DRED
    • …
    corecore