35 research outputs found

    Further advantages of data augmentation on convolutional neural networks

    Full text link
    Data augmentation is a popular technique largely used to enhance the training of convolutional neural networks. Although many of its benefits are well known by deep learning researchers and practitioners, its implicit regularization effects, as compared to popular explicit regularization techniques, such as weight decay and dropout, remain largely unstudied. As a matter of fact, convolutional neural networks for image object classification are typically trained with both data augmentation and explicit regularization, assuming the benefits of all techniques are complementary. In this paper, we systematically analyze these techniques through ablation studies of different network architectures trained with different amounts of training data. Our results unveil a largely ignored advantage of data augmentation: networks trained with just data augmentation more easily adapt to different architectures and amount of training data, as opposed to weight decay and dropout, which require specific fine-tuning of their hyperparameters.Comment: Preprint of the manuscript accepted for presentation at the International Conference on Artificial Neural Networks (ICANN) 2018. Best Paper Awar

    Regression Networks for Meta-Learning Few-Shot Classification

    Full text link
    We propose regression networks for the problem of few-shot classification, where a classifier must generalize to new classes not seen in the training set, given only a small number of examples of each class. In high dimensional embedding spaces the direction of data generally contains richer information than magnitude. Next to this, state-of-the-art few-shot metric methods that compare distances with aggregated class representations, have shown superior performance. Combining these two insights, we propose to meta-learn classification of embedded points by regressing the closest approximation in every class subspace while using the regression error as a distance metric. Similarly to recent approaches for few-shot learning, regression networks reflect a simple inductive bias that is beneficial in this limited-data regime and they achieve excellent results, especially when more aggregate class representations can be formed with multiple shots.Comment: 7th ICML Workshop on Automated Machine Learning (2020

    Attributes-Guided and Pure-Visual Attention Alignment for Few-Shot Recognition

    Full text link
    The purpose of few-shot recognition is to recognize novel categories with a limited number of labeled examples in each class. To encourage learning from a supplementary view, recent approaches have introduced auxiliary semantic modalities into effective metric-learning frameworks that aim to learn a feature similarity between training samples (support set) and test samples (query set). However, these approaches only augment the representations of samples with available semantics while ignoring the query set, which loses the potential for the improvement and may lead to a shift between the modalities combination and the pure-visual representation. In this paper, we devise an attributes-guided attention module (AGAM) to utilize human-annotated attributes and learn more discriminative features. This plug-and-play module enables visual contents and corresponding attributes to collectively focus on important channels and regions for the support set. And the feature selection is also achieved for query set with only visual information while the attributes are not available. Therefore, representations from both sets are improved in a fine-grained manner. Moreover, an attention alignment mechanism is proposed to distill knowledge from the guidance of attributes to the pure-visual branch for samples without attributes. Extensive experiments and analysis show that our proposed module can significantly improve simple metric-based approaches to achieve state-of-the-art performance on different datasets and settings.Comment: An expanded version of the same-name paper accepted by AAAI-202
    corecore