37 research outputs found

    Few-Shot Knowledge Graph Completion

    Full text link
    Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art

    Hierarchical Relational Learning for Few-Shot Knowledge Graph Completion

    Full text link
    Knowledge graphs (KGs) are known for their large scale and knowledge inference ability, but are also notorious for the incompleteness associated with them. Due to the long-tail distribution of the relations in KGs, few-shot KG completion has been proposed as a solution to alleviate incompleteness and expand the coverage of KGs. It aims to make predictions for triplets involving novel relations when only a few training triplets are provided as reference. Previous methods have mostly focused on designing local neighbor aggregators to learn entity-level information and/or imposing sequential dependency assumption at the triplet level to learn meta relation information. However, valuable pairwise triplet-level interactions and context-level relational information have been largely overlooked for learning meta representations of few-shot relations. In this paper, we propose a hierarchical relational learning method (HiRe) for few-shot KG completion. By jointly capturing three levels of relational information (entity-level, triplet-level and context-level), HiRe can effectively learn and refine the meta representation of few-shot relations, and consequently generalize very well to new unseen relations. Extensive experiments on two benchmark datasets validate the superiority of HiRe against other state-of-the-art methods.Comment: 10 pages, 5 figure

    Framing Few-Shot Knowledge Graph Completion with Large Language Models

    Get PDF
    Knowledge Graph Completion (KGC) from text involves identifying known or unknown entities (nodes) as well as relations (edges) among these entities. Recent work has started to explore the use of Large Language Models (LLMs) for entity detection and relation extraction, due to their Natural Language Understanding (NLU) capabilities. However, LLM performance varies across models and depends on the quality of the prompt engineering. We examine specific relation extraction cases and present a set of examples collected from well-known resources in a small corpus. We provide a set of annotations and identify various issues that occur when using different LLMs for this task. As LLMs will remain a focal point of future KGC research, we conclude with suggestions for improving the KGC process

    A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and Future Directions

    Full text link
    Graphs represent interconnected structures prevalent in a myriad of real-world scenarios. Effective graph analytics, such as graph learning methods, enables users to gain profound insights from graph data, underpinning various tasks including node classification and link prediction. However, these methods often suffer from data imbalance, a common issue in graph data where certain segments possess abundant data while others are scarce, thereby leading to biased learning outcomes. This necessitates the emerging field of imbalanced learning on graphs, which aims to correct these data distribution skews for more accurate and representative learning outcomes. In this survey, we embark on a comprehensive review of the literature on imbalanced learning on graphs. We begin by providing a definitive understanding of the concept and related terminologies, establishing a strong foundational understanding for readers. Following this, we propose two comprehensive taxonomies: (1) the problem taxonomy, which describes the forms of imbalance we consider, the associated tasks, and potential solutions; (2) the technique taxonomy, which details key strategies for addressing these imbalances, and aids readers in their method selection process. Finally, we suggest prospective future directions for both problems and techniques within the sphere of imbalanced learning on graphs, fostering further innovation in this critical area.Comment: The collection of awesome literature on imbalanced learning on graphs: https://github.com/Xtra-Computing/Awesome-Literature-ILoG

    On the Evolution of Knowledge Graphs: A Survey and Perspective

    Full text link
    Knowledge graphs (KGs) are structured representations of diversified knowledge. They are widely used in various intelligent applications. In this article, we provide a comprehensive survey on the evolution of various types of knowledge graphs (i.e., static KGs, dynamic KGs, temporal KGs, and event KGs) and techniques for knowledge extraction and reasoning. Furthermore, we introduce the practical applications of different types of KGs, including a case study in financial analysis. Finally, we propose our perspective on the future directions of knowledge engineering, including the potential of combining the power of knowledge graphs and large language models (LLMs), and the evolution of knowledge extraction, reasoning, and representation

    Learning One-shot Relations in Temporal Knowledge Graphs

    Get PDF

    Boosting Few-shot 3D Point Cloud Segmentation via Query-Guided Enhancement

    Full text link
    Although extensive research has been conducted on 3D point cloud segmentation, effectively adapting generic models to novel categories remains a formidable challenge. This paper proposes a novel approach to improve point cloud few-shot segmentation (PC-FSS) models. Unlike existing PC-FSS methods that directly utilize categorical information from support prototypes to recognize novel classes in query samples, our method identifies two critical aspects that substantially enhance model performance by reducing contextual gaps between support prototypes and query features. Specifically, we (1) adapt support background prototypes to match query context while removing extraneous cues that may obscure foreground and background in query samples, and (2) holistically rectify support prototypes under the guidance of query features to emulate the latter having no semantic gap to the query targets. Our proposed designs are agnostic to the feature extractor, rendering them readily applicable to any prototype-based methods. The experimental results on S3DIS and ScanNet demonstrate notable practical benefits, as our approach achieves significant improvements while still maintaining high efficiency. The code for our approach is available at https://github.com/AaronNZH/Boosting-Few-shot-3D-Point-Cloud-Segmentation-via-Query-Guided-EnhancementComment: Accepted to ACM MM 202

    Relational structure-aware knowledge graph representation in complex space

    Get PDF
    Relations in knowledge graphs have rich relational structures and various binary relational patterns. Various relation modelling strategies are proposed for embedding knowledge graphs, but they fail to fully capture both features of relations, rich relational structures and various binary relational patterns. To address the problem of insufficient embedding due to the complexity of the relations, we propose a novel knowledge graph representation model in complex space, namely MARS, to exploit complex relations to embed knowledge graphs. MARS takes the mechanisms of complex numbers and message-passing and then embeds triplets into relation-specific complex hyperplanes. Thus, MARS can well preserve various relation patterns, as well as structural information in knowledge graphs. In addition, we find that the scores generated from the score function approximate a Gaussian distribution. The scores in the tail cannot effectively represent triplets. To address this particular issue and improve the precision of embeddings, we use the standard deviation to limit the dispersion of the score distribution, resulting in more accurate embeddings of triplets. Comprehensive experiments on multiple benchmarks demonstrate that our model significantly outperforms existing state-of-the-art models for link prediction and triple classification. © 2022 by the authors. Licensee MDPI, Basel, Switzerland
    corecore