106,187 research outputs found

    Feedback Control of Quantum Transport

    Full text link
    The current through nanostructures like quantum dots can be stabilized by a feedback loop that continuously adjusts system parameters as a function of the number of tunnelled particles nn. At large times, the feedback loop freezes the fluctuations of nn which leads to highly accurate, continuous single particle transfers. For the simplest case of feedback acting simultaneously on all system parameters, we show how to reconstruct the original full counting statistics from the frozen distribution.Comment: 4 pages, 2 figure

    Feedback control of unsupported standing

    Get PDF
    This paper presents the results of continuing work on feedback control of unsupported standing in paraplegia. Our experimental setup considers a situation in which all joints above the ankle are braced, and stabilising torque at the ankle is generated by stimulation of the plantarflexors. A previous study showed that short periods of unsupported standing with paraplegic subjects could be achieved. In order to improve consistency and reliability of unsupported standing we are currently investigating several modifications to the control strategy. The paper reports progress towards this goal

    Feedback control of spin systems

    Full text link
    The feedback stabilization problem for ensembles of coupled spin 1/2 systems is discussed from a control theoretic perspective. The noninvasive nature of the bulk measurement allows for a fully unitary and deterministic closed loop. The Lyapunov-based feedback design presented does not require spins that are selectively addressable. With this method, it is possible to obtain control inputs also for difficult tasks, like suppressing undesired couplings in identical spin systems.Comment: 16 pages, 15 figure

    Towards feedback control of entanglement

    Full text link
    We provide a model to investigate feedback control of entanglement. It consists of two distant (two-level) atoms which interact through a radiation field and becomes entangled. We then show the possibility to stabilize such entanglement against atomic decay by means of a feedback action.Comment: 6 pages, 4 figure

    Thermodynamics of adiabatic feedback control

    Full text link
    We study adaptive control of classical ergodic Hamiltonian systems, where the controlling parameter varies slowly in time and is influenced by system's state (feedback). An effective adiabatic description is obtained for slow variables of the system. A general limit on the feedback induced negative entropy production is uncovered. It relates the quickest negentropy production to fluctuations of the control Hamiltonian. The method deals efficiently with the entropy-information trade off.Comment: 6 pages, 1 figur
    • …
    corecore