44,519 research outputs found

    Fuzzy Feedback Scheduling of Resource-Constrained Embedded Control Systems

    Full text link
    The quality of control (QoC) of a resource-constrained embedded control system may be jeopardized in dynamic environments with variable workload. This gives rise to the increasing demand of co-design of control and scheduling. To deal with uncertainties in resource availability, a fuzzy feedback scheduling (FFS) scheme is proposed in this paper. Within the framework of feedback scheduling, the sampling periods of control loops are dynamically adjusted using the fuzzy control technique. The feedback scheduler provides QoC guarantees in dynamic environments through maintaining the CPU utilization at a desired level. The framework and design methodology of the proposed FFS scheme are described in detail. A simplified mobile robot target tracking system is investigated as a case study to demonstrate the effectiveness of the proposed FFS scheme. The scheme is independent of task execution times, robust to measurement noises, and easy to implement, while incurring only a small overhead.Comment: To appear in International Journal of Innovative Computing, Information and Contro

    Synthetic biology: advancing biological frontiers by building synthetic systems

    Get PDF
    Advances in synthetic biology are contributing to diverse research areas, from basic biology to biomanufacturing and disease therapy. We discuss the theoretical foundation, applications, and potential of this emerging field

    What influences the speed of prototyping? An empirical investigation of twenty software startups

    Full text link
    It is essential for startups to quickly experiment business ideas by building tangible prototypes and collecting user feedback on them. As prototyping is an inevitable part of learning for early stage software startups, how fast startups can learn depends on how fast they can prototype. Despite of the importance, there is a lack of research about prototyping in software startups. In this study, we aimed at understanding what are factors influencing different types of prototyping activities. We conducted a multiple case study on twenty European software startups. The results are two folds, firstly we propose a prototype-centric learning model in early stage software startups. Secondly, we identify factors occur as barriers but also facilitators for prototyping in early stage software startups. The factors are grouped into (1) artifacts, (2) team competence, (3) collaboration, (4) customer and (5) process dimensions. To speed up a startups progress at the early stage, it is important to incorporate the learning objective into a well-defined collaborative approach of prototypingComment: This is the author's version of the work. Copyright owner's version can be accessed at doi.org/10.1007/978-3-319-57633-6_2, XP2017, Cologne, German

    Exploring the Dynamic Costs of Process-aware Information Systems through Simulation

    Get PDF
    Introducing process-aware information systems (PAIS) in enterprises (e.g., workflow management systems, case handling systems) is associated with high costs. Though cost evaluation has received considerable attention in software engineering for many years, it is difficult to apply existing evaluation approaches to PAIS. This difficulty particularly stems from the inability of these techniques to deal with the complex interplay of the many technological, organizational and project-driven factors which emerge in the context of PAIS engineering projects. In response to this problem this paper proposes an approach which utilizes simulation models for investigating costs related to PAIS engineering projects. We motivate the need for simulation, discuss the design and execution of simulation models, and give an illustrating example

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations

    Active causation and the origin of meaning

    Get PDF
    Purpose and meaning are necessary concepts for understanding mind and culture, but appear to be absent from the physical world and are not part of the explanatory framework of the natural sciences. Understanding how meaning (in the broad sense of the term) could arise from a physical world has proven to be a tough problem. The basic scheme of Darwinian evolution produces adaptations that only represent apparent ("as if") goals and meaning. Here I use evolutionary models to show that a slight, evolvable extension of the basic scheme is sufficient to produce genuine goals. The extension, targeted modulation of mutation rate, is known to be generally present in biological cells, and gives rise to two phenomena that are absent from the non-living world: intrinsic meaning and the ability to initiate goal-directed chains of causation (active causation). The extended scheme accomplishes this by utilizing randomness modulated by a feedback loop that is itself regulated by evolutionary pressure. The mechanism can be extended to behavioural variability as well, and thus shows how freedom of behaviour is possible. A further extension to communication suggests that the active exchange of intrinsic meaning between organisms may be the origin of consciousness, which in combination with active causation can provide a physical basis for the phenomenon of free will.Comment: revised and extende
    corecore