128,263 research outputs found

    VHDL-AMS modeling of an automotive vibration isolation seating system

    No full text
    This paper presents VHDL-AMS model of an automotive vibration isolation seating system with an active electromechanical actuator. Five control algorithms for the actuator are implemented and their efficiencies are investigated by subjecting the system to a number of stimuli, such as a single jolt or noisy harmonic excitations. Simulations were carried out using the SystemVision simulator and results are shown to compare the relative performance merits of the control methods

    Learning Pose Estimation for UAV Autonomous Navigation and Landing Using Visual-Inertial Sensor Data

    Get PDF
    In this work, we propose a robust network-in-the-loop control system for autonomous navigation and landing of an Unmanned-Aerial-Vehicle (UAV). To estimate the UAV’s absolute pose, we develop a deep neural network (DNN) architecture for visual-inertial odometry, which provides a robust alternative to traditional methods. We first evaluate the accuracy of the estimation by comparing the prediction of our model to traditional visual-inertial approaches on the publicly available EuRoC MAV dataset. The results indicate a clear improvement in the accuracy of the pose estimation up to 25% over the baseline. Finally, we integrate the data-driven estimator in the closed-loop flight control system of Airsim, a simulator available as a plugin for Unreal Engine, and we provide simulation results for autonomous navigation and landing
    corecore