68,860 research outputs found

    Feedback Capacity of the Compound Channel

    Full text link
    In this work we find the capacity of a compound finite-state channel with time-invariant deterministic feedback. The model we consider involves the use of fixed length block codes. Our achievability result includes a proof of the existence of a universal decoder for the family of finite-state channels with feedback. As a consequence of our capacity result, we show that feedback does not increase the capacity of the compound Gilbert-Elliot channel. Additionally, we show that for a stationary and uniformly ergodic Markovian channel, if the compound channel capacity is zero without feedback then it is zero with feedback. Finally, we use our result on the finite-state channel to show that the feedback capacity of the memoryless compound channel is given by infθmaxQXI(X;Yθ)\inf_{\theta} \max_{Q_X} I(X;Y|\theta).Comment: 34 pages, 2 figures, submitted to IEEE Transactions on Information Theor

    Compound Multiple Access Channel with Confidential Messages

    Full text link
    In this paper, we study the problem of secret communication over a Compound Multiple Access Channel (MAC). In this channel, we assume that one of the transmitted messages is confidential that is only decoded by its corresponding receiver and kept secret from the other receiver. For this proposed setting (compound MAC with confidential messages), we derive general inner and outer bounds on the secrecy capacity region. Also, as examples, we investigate 'Less noisy' and 'Gaussian' versions of this channel, and extend the results of the discrete memoryless version to these cases. Moreover, providing numerical examples for the Gaussian case, we illustrate the comparison between achievable rate regions of compound MAC and compound MAC with confidential messages.Comment: Accepted at IEEE ICC 2014. arXiv admin note: substantial text overlap with arXiv:1402.479

    On the Vector Broadcast Channel with Alternating CSIT: A Topological Perspective

    Full text link
    In many wireless networks, link strengths are affected by many topological factors such as different distances, shadowing and inter-cell interference, thus resulting in some links being generally stronger than other links. From an information theoretic point of view, accounting for such topological aspects has remained largely unexplored, despite strong indications that such aspects can crucially affect transceiver and feedback design, as well as the overall performance. The work here takes a step in exploring this interplay between topology, feedback and performance. This is done for the two user broadcast channel with random fading, in the presence of a simple two-state topological setting of statistically strong vs. weaker links, and in the presence of a practical ternary feedback setting of alternating channel state information at the transmitter (alternating CSIT) where for each channel realization, this CSIT can be perfect, delayed, or not available. In this setting, the work derives generalized degrees-of-freedom bounds and exact expressions, that capture performance as a function of feedback statistics and topology statistics. The results are based on novel topological signal management (TSM) schemes that account for topology in order to fully utilize feedback. This is achieved for different classes of feedback mechanisms of practical importance, from which we identify specific feedback mechanisms that are best suited for different topologies. This approach offers further insight on how to split the effort --- of channel learning and feeding back CSIT --- for the strong versus for the weaker link. Further intuition is provided on the possible gains from topological spatio-temporal diversity, where topology changes in time and across users.Comment: Shorter version will be presented at ISIT 201
    corecore