1,164 research outputs found

    Federated Self-Supervised Learning of Multi-Sensor Representations for Embedded Intelligence

    Get PDF
    Smartphones, wearables, and Internet of Things (IoT) devices produce a wealth of data that cannot be accumulated in a centralized repository for learning supervised models due to privacy, bandwidth limitations, and the prohibitive cost of annotations. Federated learning provides a compelling framework for learning models from decentralized data, but conventionally, it assumes the availability of labeled samples, whereas on-device data are generally either unlabeled or cannot be annotated readily through user interaction. To address these issues, we propose a self-supervised approach termed \textit{scalogram-signal correspondence learning} based on wavelet transform to learn useful representations from unlabeled sensor inputs, such as electroencephalography, blood volume pulse, accelerometer, and WiFi channel state information. Our auxiliary task requires a deep temporal neural network to determine if a given pair of a signal and its complementary viewpoint (i.e., a scalogram generated with a wavelet transform) align with each other or not through optimizing a contrastive objective. We extensively assess the quality of learned features with our multi-view strategy on diverse public datasets, achieving strong performance in all domains. We demonstrate the effectiveness of representations learned from an unlabeled input collection on downstream tasks with training a linear classifier over pretrained network, usefulness in low-data regime, transfer learning, and cross-validation. Our methodology achieves competitive performance with fully-supervised networks, and it outperforms pre-training with autoencoders in both central and federated contexts. Notably, it improves the generalization in a semi-supervised setting as it reduces the volume of labeled data required through leveraging self-supervised learning.Comment: Accepted for publication at IEEE Internet of Things Journa

    Learning Sensory Representations with Minimal Supervision

    Get PDF

    Federated Transfer Learning with Multimodal Data

    Full text link
    Smart cars, smartphones and other devices in the Internet of Things (IoT), which usually have more than one sensors, produce multimodal data. Federated Learning supports collecting a wealth of multimodal data from different devices without sharing raw data. Transfer Learning methods help transfer knowledge from some devices to others. Federated Transfer Learning methods benefit both Federated Learning and Transfer Learning. This newly proposed Federated Transfer Learning framework aims at connecting data islands with privacy protection. Our construction is based on Federated Learning and Transfer Learning. Compared with previous Federated Transfer Learnings, where each user should have data with identical modalities (either all unimodal or all multimodal), our new framework is more generic, it allows a hybrid distribution of user data. The core strategy is to use two different but inherently connected training methods for our two types of users. Supervised Learning is adopted for users with only unimodal data (Type 1), while Self-Supervised Learning is applied to user with multimodal data (Type 2) for both the feature of each modality and the connection between them. This connection knowledge of Type 2 will help Type 1 in later stages of training. Training in the new framework can be divided in three steps. In the first step, users who have data with the identical modalities are grouped together. For example, user with only sound signals are in group one, and those with only images are in group two, and users with multimodal data are in group three, and so on. In the second step, Federated Learning is executed within the groups, where Supervised Learning and Self-Supervised Learning are used depending on the group's nature. Most of the Transfer Learning happens in the third step, where the related parts in the network obtained from the previous steps are aggregated (federated).Comment: 73 pages, 54 figures, master thesi

    A Survey of Graph-based Deep Learning for Anomaly Detection in Distributed Systems

    Full text link
    Anomaly detection is a crucial task in complex distributed systems. A thorough understanding of the requirements and challenges of anomaly detection is pivotal to the security of such systems, especially for real-world deployment. While there are many works and application domains that deal with this problem, few have attempted to provide an in-depth look at such systems. In this survey, we explore the potentials of graph-based algorithms to identify anomalies in distributed systems. These systems can be heterogeneous or homogeneous, which can result in distinct requirements. One of our objectives is to provide an in-depth look at graph-based approaches to conceptually analyze their capability to handle real-world challenges such as heterogeneity and dynamic structure. This study gives an overview of the State-of-the-Art (SotA) research articles in the field and compare and contrast their characteristics. To facilitate a more comprehensive understanding, we present three systems with varying abstractions as use cases. We examine the specific challenges involved in anomaly detection within such systems. Subsequently, we elucidate the efficacy of graphs in such systems and explicate their advantages. We then delve into the SotA methods and highlight their strength and weaknesses, pointing out the areas for possible improvements and future works.Comment: The first two authors (A. Danesh Pazho and G. Alinezhad Noghre) have equal contribution. The article is accepted by IEEE Transactions on Knowledge and Data Engineerin

    FedMEKT: Distillation-based Embedding Knowledge Transfer for Multimodal Federated Learning

    Full text link
    Federated learning (FL) enables a decentralized machine learning paradigm for multiple clients to collaboratively train a generalized global model without sharing their private data. Most existing works simply propose typical FL systems for single-modal data, thus limiting its potential on exploiting valuable multimodal data for future personalized applications. Furthermore, the majority of FL approaches still rely on the labeled data at the client side, which is limited in real-world applications due to the inability of self-annotation from users. In light of these limitations, we propose a novel multimodal FL framework that employs a semi-supervised learning approach to leverage the representations from different modalities. Bringing this concept into a system, we develop a distillation-based multimodal embedding knowledge transfer mechanism, namely FedMEKT, which allows the server and clients to exchange the joint knowledge of their learning models extracted from a small multimodal proxy dataset. Our FedMEKT iteratively updates the generalized global encoders with the joint embedding knowledge from the participating clients. Thereby, to address the modality discrepancy and labeled data constraint in existing FL systems, our proposed FedMEKT comprises local multimodal autoencoder learning, generalized multimodal autoencoder construction, and generalized classifier learning. Through extensive experiments on three multimodal human activity recognition datasets, we demonstrate that FedMEKT achieves superior global encoder performance on linear evaluation and guarantees user privacy for personal data and model parameters while demanding less communication cost than other baselines

    Exploring the Landscape of Ubiquitous In-home Health Monitoring: A Comprehensive Survey

    Full text link
    Ubiquitous in-home health monitoring systems have become popular in recent years due to the rise of digital health technologies and the growing demand for remote health monitoring. These systems enable individuals to increase their independence by allowing them to monitor their health from the home and by allowing more control over their well-being. In this study, we perform a comprehensive survey on this topic by reviewing a large number of literature in the area. We investigate these systems from various aspects, namely sensing technologies, communication technologies, intelligent and computing systems, and application areas. Specifically, we provide an overview of in-home health monitoring systems and identify their main components. We then present each component and discuss its role within in-home health monitoring systems. In addition, we provide an overview of the practical use of ubiquitous technologies in the home for health monitoring. Finally, we identify the main challenges and limitations based on the existing literature and provide eight recommendations for potential future research directions toward the development of in-home health monitoring systems. We conclude that despite extensive research on various components needed for the development of effective in-home health monitoring systems, the development of effective in-home health monitoring systems still requires further investigation.Comment: 35 pages, 5 figure

    AI Security for Geoscience and Remote Sensing: Challenges and Future Trends

    Full text link
    Recent advances in artificial intelligence (AI) have significantly intensified research in the geoscience and remote sensing (RS) field. AI algorithms, especially deep learning-based ones, have been developed and applied widely to RS data analysis. The successful application of AI covers almost all aspects of Earth observation (EO) missions, from low-level vision tasks like super-resolution, denoising and inpainting, to high-level vision tasks like scene classification, object detection and semantic segmentation. While AI techniques enable researchers to observe and understand the Earth more accurately, the vulnerability and uncertainty of AI models deserve further attention, considering that many geoscience and RS tasks are highly safety-critical. This paper reviews the current development of AI security in the geoscience and RS field, covering the following five important aspects: adversarial attack, backdoor attack, federated learning, uncertainty and explainability. Moreover, the potential opportunities and trends are discussed to provide insights for future research. To the best of the authors' knowledge, this paper is the first attempt to provide a systematic review of AI security-related research in the geoscience and RS community. Available code and datasets are also listed in the paper to move this vibrant field of research forward
    • …
    corecore