5,770 research outputs found

    Continual Local Training for Better Initialization of Federated Models

    Full text link
    Federated learning (FL) refers to the learning paradigm that trains machine learning models directly in the decentralized systems consisting of smart edge devices without transmitting the raw data, which avoids the heavy communication costs and privacy concerns. Given the typical heterogeneous data distributions in such situations, the popular FL algorithm \emph{Federated Averaging} (FedAvg) suffers from weight divergence and thus cannot achieve a competitive performance for the global model (denoted as the \emph{initial performance} in FL) compared to centralized methods. In this paper, we propose the local continual training strategy to address this problem. Importance weights are evaluated on a small proxy dataset on the central server and then used to constrain the local training. With this additional term, we alleviate the weight divergence and continually integrate the knowledge on different local clients into the global model, which ensures a better generalization ability. Experiments on various FL settings demonstrate that our method significantly improves the initial performance of federated models with few extra communication costs.Comment: This paper has been accepted to 2020 IEEE International Conference on Image Processing (ICIP 2020

    Peer to Peer Information Retrieval: An Overview

    Get PDF
    Peer-to-peer technology is widely used for file sharing. In the past decade a number of prototype peer-to-peer information retrieval systems have been developed. Unfortunately, none of these have seen widespread real- world adoption and thus, in contrast with file sharing, information retrieval is still dominated by centralised solutions. In this paper we provide an overview of the key challenges for peer-to-peer information retrieval and the work done so far. We want to stimulate and inspire further research to overcome these challenges. This will open the door to the development and large-scale deployment of real-world peer-to-peer information retrieval systems that rival existing centralised client-server solutions in terms of scalability, performance, user satisfaction and freedom

    A Survey on Secure and Private Federated Learning Using Blockchain: Theory and Application in Resource-constrained Computing

    Full text link
    Federated Learning (FL) has gained widespread popularity in recent years due to the fast booming of advanced machine learning and artificial intelligence along with emerging security and privacy threats. FL enables efficient model generation from local data storage of the edge devices without revealing the sensitive data to any entities. While this paradigm partly mitigates the privacy issues of users' sensitive data, the performance of the FL process can be threatened and reached a bottleneck due to the growing cyber threats and privacy violation techniques. To expedite the proliferation of FL process, the integration of blockchain for FL environments has drawn prolific attention from the people of academia and industry. Blockchain has the potential to prevent security and privacy threats with its decentralization, immutability, consensus, and transparency characteristic. However, if the blockchain mechanism requires costly computational resources, then the resource-constrained FL clients cannot be involved in the training. Considering that, this survey focuses on reviewing the challenges, solutions, and future directions for the successful deployment of blockchain in resource-constrained FL environments. We comprehensively review variant blockchain mechanisms that are suitable for FL process and discuss their trade-offs for a limited resource budget. Further, we extensively analyze the cyber threats that could be observed in a resource-constrained FL environment, and how blockchain can play a key role to block those cyber attacks. To this end, we highlight some potential solutions towards the coupling of blockchain and federated learning that can offer high levels of reliability, data privacy, and distributed computing performance

    When Foundation Model Meets Federated Learning: Motivations, Challenges, and Future Directions

    Full text link
    The intersection of the Foundation Model (FM) and Federated Learning (FL) provides mutual benefits, presents a unique opportunity to unlock new possibilities in AI research, and address critical challenges in AI and real-world applications. FL expands the availability of data for FMs and enables computation sharing, distributing the training process and reducing the burden on FL participants. It promotes collaborative FM development, democratizing the process and fostering inclusivity and innovation. On the other hand, FM, with its enormous size, pre-trained knowledge, and exceptional performance, serves as a robust starting point for FL, facilitating faster convergence and better performance under non-iid data. Additionally, leveraging FM to generate synthetic data enriches data diversity, reduces overfitting, and preserves privacy. By examining the interplay between FL and FM, this paper aims to deepen the understanding of their synergistic relationship, highlighting the motivations, challenges, and future directions. Through an exploration of the challenges faced by FL and FM individually and their interconnections, we aim to inspire future research directions that can further enhance both fields, driving advancements and propelling the development of privacy-preserving and scalable AI systems

    Towards Fairness-Aware Federated Learning

    Full text link
    Recent advances in Federated Learning (FL) have brought large-scale collaborative machine learning opportunities for massively distributed clients with performance and data privacy guarantees. However, most current works focus on the interest of the central controller in FL,and overlook the interests of the FL clients. This may result in unfair treatment of clients which discourages them from actively participating in the learning process and damages the sustainability of the FL ecosystem. Therefore, the topic of ensuring fairness in FL is attracting a great deal of research interest. In recent years, diverse Fairness-Aware FL (FAFL) approaches have been proposed in an effort to achieve fairness in FL from different perspectives. However, there is no comprehensive survey which helps readers gain insight into this interdisciplinary field. This paper aims to provide such a survey. By examining the fundamental and simplifying assumptions, as well as the notions of fairness adopted by existing literature in this field, we propose a taxonomy of FAFL approaches covering major steps in FL, including client selection, optimization, contribution evaluation and incentive distribution. In addition, we discuss the main metrics for experimentally evaluating the performance of FAFL approaches, and suggest promising future research directions towards fairness-aware federated learning.Comment: 16 pages, 4 figure

    A Comprehensive Survey On Client Selections in Federated Learning

    Full text link
    Federated Learning (FL) is a rapidly growing field in machine learning that allows data to be trained across multiple decentralized devices. The selection of clients to participate in the training process is a critical factor for the performance of the overall system. In this survey, we provide a comprehensive overview of the state-of-the-art client selection techniques in FL, including their strengths and limitations, as well as the challenges and open issues that need to be addressed. We cover conventional selection techniques such as random selection where all or partial random of clients is used for the trained. We also cover performance-aware selections and as well as resource-aware selections for resource-constrained networks and heterogeneous networks. We also discuss the usage of client selection in model security enhancement. Lastly, we discuss open issues and challenges related to clients selection in dynamic constrained, and heterogeneous networks
    corecore