650 research outputs found

    A federated learning framework for the next-generation machine learning systems

    Get PDF
    Dissertação de mestrado em Engenharia Eletrónica Industrial e Computadores (especialização em Sistemas Embebidos e Computadores)The end of Moore's Law aligned with rising concerns about data privacy is forcing machine learning (ML) to shift from the cloud to the deep edge, near to the data source. In the next-generation ML systems, the inference and part of the training process will be performed right on the edge, while the cloud will be responsible for major ML model updates. This new computing paradigm, referred to by academia and industry researchers as federated learning, alleviates the cloud and network infrastructure while increasing data privacy. Recent advances have made it possible to efficiently execute the inference pass of quantized artificial neural networks on Arm Cortex-M and RISC-V (RV32IMCXpulp) microcontroller units (MCUs). Nevertheless, the training is still confined to the cloud, imposing the transaction of high volumes of private data over a network. To tackle this issue, this MSc thesis makes the first attempt to run a decentralized training in Arm Cortex-M MCUs. To port part of the training process to the deep edge is proposed L-SGD, a lightweight version of the stochastic gradient descent optimized for maximum speed and minimal memory footprint on Arm Cortex-M MCUs. The L-SGD is 16.35x faster than the TensorFlow solution while registering a memory footprint reduction of 13.72%. This comes at the cost of a negligible accuracy drop of only 0.12%. To merge local model updates returned by edge devices this MSc thesis proposes R-FedAvg, an implementation of the FedAvg algorithm that reduces the impact of faulty model updates returned by malicious devices.O fim da Lei de Moore aliado às crescentes preocupações sobre a privacidade dos dados gerou a necessidade de migrar as aplicações de Machine Learning (ML) da cloud para o edge, perto da fonte de dados. Na próxima geração de sistemas ML, a inferência e parte do processo de treino será realizada diretamente no edge, enquanto que a cloud será responsável pelas principais atualizações do modelo ML. Este novo paradigma informático, referido pelos investigadores académicos e industriais como treino federativo, diminui a sobrecarga na cloud e na infraestrutura de rede, ao mesmo tempo que aumenta a privacidade dos dados. Avanços recentes tornaram possível a execução eficiente do processo de inferência de redes neurais artificiais quantificadas em microcontroladores Arm Cortex-M e RISC-V (RV32IMCXpulp). No entanto, o processo de treino continua confinado à cloud, impondo a transação de grandes volumes de dados privados sobre uma rede. Para abordar esta questão, esta dissertação faz a primeira tentativa de realizar um treino descentralizado em microcontroladores Arm Cortex-M. Para migrar parte do processo de treino para o edge é proposto o L-SGD, uma versão lightweight do tradicional método stochastic gradient descent (SGD), otimizada para uma redução de latência do processo de treino e uma redução de recursos de memória nos microcontroladores Arm Cortex-M. O L-SGD é 16,35x mais rápido do que a solução disponibilizada pelo TensorFlow, ao mesmo tempo que regista uma redução de utilização de memória de 13,72%. O custo desta abordagem é desprezível, sendo a perda de accuracy do modelo de apenas 0,12%. Para fundir atualizações de modelos locais devolvidas por dispositivos do edge, é proposto o RFedAvg, uma implementação do algoritmo FedAvg que reduz o impacto de atualizações de modelos não contributivos devolvidos por dispositivos maliciosos

    MUD-PQFed: Towards Malicious User Detection in Privacy-Preserving Quantized Federated Learning

    Full text link
    Federated Learning (FL), a distributed machine learning paradigm, has been adapted to mitigate privacy concerns for customers. Despite their appeal, there are various inference attacks that can exploit shared-plaintext model updates to embed traces of customer private information, leading to serious privacy concerns. To alleviate this privacy issue, cryptographic techniques such as Secure Multi-Party Computation and Homomorphic Encryption have been used for privacy-preserving FL. However, such security issues in privacy-preserving FL are poorly elucidated and underexplored. This work is the first attempt to elucidate the triviality of performing model corruption attacks on privacy-preserving FL based on lightweight secret sharing. We consider scenarios in which model updates are quantized to reduce communication overhead in this case, where an adversary can simply provide local parameters outside the legal range to corrupt the model. We then propose the MUD-PQFed protocol, which can precisely detect malicious clients performing attacks and enforce fair penalties. By removing the contributions of detected malicious clients, the global model utility is preserved to be comparable to the baseline global model without the attack. Extensive experiments validate effectiveness in maintaining baseline accuracy and detecting malicious clients in a fine-grained mannerComment: 13 pages,13 figure

    QuPeD: Quantized Personalization via Distillation with Applications to Federated Learning

    Full text link
    Traditionally, federated learning (FL) aims to train a single global model while collaboratively using multiple clients and a server. Two natural challenges that FL algorithms face are heterogeneity in data across clients and collaboration of clients with {\em diverse resources}. In this work, we introduce a \textit{quantized} and \textit{personalized} FL algorithm QuPeD that facilitates collective (personalized model compression) training via \textit{knowledge distillation} (KD) among clients who have access to heterogeneous data and resources. For personalization, we allow clients to learn \textit{compressed personalized models} with different quantization parameters and model dimensions/structures. Towards this, first we propose an algorithm for learning quantized models through a relaxed optimization problem, where quantization values are also optimized over. When each client participating in the (federated) learning process has different requirements for the compressed model (both in model dimension and precision), we formulate a compressed personalization framework by introducing knowledge distillation loss for local client objectives collaborating through a global model. We develop an alternating proximal gradient update for solving this compressed personalization problem, and analyze its convergence properties. Numerically, we validate that QuPeD outperforms competing personalized FL methods, FedAvg, and local training of clients in various heterogeneous settings.Comment: Appeared in NeurIPS2021. arXiv admin note: text overlap with arXiv:2102.1178

    FedVQCS: Federated Learning via Vector Quantized Compressed Sensing

    Full text link
    In this paper, a new communication-efficient federated learning (FL) framework is proposed, inspired by vector quantized compressed sensing. The basic strategy of the proposed framework is to compress the local model update at each device by applying dimensionality reduction followed by vector quantization. Subsequently, the global model update is reconstructed at a parameter server (PS) by applying a sparse signal recovery algorithm to the aggregation of the compressed local model updates. By harnessing the benefits of both dimensionality reduction and vector quantization, the proposed framework effectively reduces the communication overhead of local update transmissions. Both the design of the vector quantizer and the key parameters for the compression are optimized so as to minimize the reconstruction error of the global model update under the constraint of wireless link capacity. By considering the reconstruction error, the convergence rate of the proposed framework is also analyzed for a smooth loss function. Simulation results on the MNIST and CIFAR-10 datasets demonstrate that the proposed framework provides more than a 2.5% increase in classification accuracy compared to state-of-art FL frameworks when the communication overhead of the local model update transmission is less than 0.1 bit per local model entry
    corecore