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 The end of Moore's Law aligned with rising concerns about data privacy is forcing machine learning 

(ML) to shift from the cloud to the deep edge, near to the data source. In the next-generation ML systems, 

the inference and part of the training process will be performed right on the edge, while the cloud will be 

responsible for major ML model updates. This new computing paradigm, referred to by academia and 

industry researchers as federated learning, alleviates the cloud and network infrastructure while 

increasing data privacy. Recent advances have made it possible to efficiently execute the inference pass 

of quantized artificial neural networks on Arm Cortex-M and RISC-V (RV32IMCXpulp) microcontroller units 

(MCUs). Nevertheless, the training is still confined to the cloud, imposing the transaction of high volumes 

of private data over a network.  

 To tackle this issue, this MSc thesis makes the first attempt to run a decentralized training in Arm 

Cortex-M MCUs. To port part of the training process to the deep edge is proposed L-SGD, a lightweight 

version of the stochastic gradient descent optimized for maximum speed and minimal memory footprint 

on Arm Cortex-M MCUs. The L-SGD is 16.35x faster than the TensorFlow solution while registering a 

memory footprint reduction of 13.72%. This comes at the cost of a negligible accuracy drop of only 0.12%. 

To merge local model updates returned by edge devices this MSc thesis proposes R-FedAvg, an 

implementation of the FedAvg algorithm that reduces the impact of faulty model updates returned by 

malicious devices. 

Keywords: Federated learning, Machine learning, Artificial neural networks, Artificial intelligence, 

Machine learning algorithms, Intelligent systems, Internet of Things, Arm Cortex-M. 
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  O fim da Lei de Moore aliado às crescentes preocupações sobre a privacidade dos dados gerou a 

necessidade de migrar as aplicações de Machine Learning (ML) da cloud para o edge, perto da fonte de 

dados. Na próxima geração de sistemas ML, a inferência e parte do processo de treino será realizada 

diretamente no edge, enquanto que a cloud será responsável pelas principais atualizações do modelo 

ML. Este novo paradigma informático, referido pelos investigadores académicos e industriais como treino 

federativo, diminui a sobrecarga na cloud e na infraestrutura de rede, ao mesmo tempo que aumenta a 

privacidade dos dados. Avanços recentes tornaram possível a execução eficiente do processo de 

inferência de redes neurais artificiais quantificadas em microcontroladores Arm Cortex-M e RISC-V 

(RV32IMCXpulp). No entanto, o processo de treino continua confinado à cloud, impondo a transação de 

grandes volumes de dados privados sobre uma rede.  

 Para abordar esta questão, esta dissertação faz a primeira tentativa de realizar um treino 

descentralizado em microcontroladores Arm Cortex-M. Para migrar parte do processo de treino para o 

edge é proposto o L-SGD, uma versão lightweight do tradicional método stochastic gradient descent 

(SGD), otimizada para uma redução de latência do processo de treino e uma redução de recursos de 

memória nos microcontroladores Arm Cortex-M. O L-SGD é 16,35x mais rápido do que a solução 

disponibilizada pelo TensorFlow, ao mesmo tempo que regista uma redução de utilização de memória 

de 13,72%. O custo desta abordagem é desprezível, sendo a perda de accuracy do modelo de apenas 

0,12%. Para fundir atualizações de modelos locais devolvidas por dispositivos do edge, é proposto o R-

FedAvg, uma implementação do algoritmo FedAvg que reduz o impacto de atualizações de modelos não 

contributivos devolvidos por dispositivos maliciosos.  

Palavras-chave:  Treino federativo, Machine learning, Redes neuronais arificiais, Intelegência 

artificial, Algoritmos de machine learning, Sistemas inteligentes, Internet das 

coisas, Arm Cortex-M. 
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Chapter 1 

 

Introduction 

 This chapter outlines the problem addressed in this MSc thesis, as well as the goals that must be 

achieved to develop a solution suitable for solving that problem. The chapter ends with a brief description 

of the structure of this document. 

1.1 Problem Statement 

 With predictions pointing to 1 trillion connected devices by 2035 [1], Machine Learning (ML) has 

been used as a key technology for decision-making problems in the Big Data era [2]. Fields like 

autonomous driving [3], [4], security systems [5], [6], and even healthcare  [7], [8] are already exploring 

ML solutions to develop smart systems capable of aiding or replacing human activity. 

 As ML depends on the availability of tremendous computational power, ML computations have 

been predominantly confined to cloud servers, powered by large CPUs, GPUs, and/or ASICs. In this 

centralized computing paradigm, data collected at the edge is transferred to a central server, which runs 

ML services and returns the generated output to the edge [9]. Notwithstanding, the expected increase of 

internet of things (IoT) nodes aligned with the end of Moore's law is threatening this centralized computing 

paradigm [10]. The expected overload of the network bandwidth and computational power of the cloud 

can induce unreasonable latencies in decision-making processes, which may delay the adoption of ML in 

scenarios demanding real-time response [11], [12]. Consequently, academia and industry have been 

developing software and hardware solutions to shift intelligence to the deep edge, providing it with the 

ability to autonomously infer and adapt to the surrounding environment, while leveraging the cloud to 

major model updates [13], [14]. This new paradigm, commonly referred to as federated learning (FL), 

considers that the inference and part of the training mechanism are performed on the edge, near to the 

data source, leaving the server with the responsibility of merging the minor model updates performed at 

the edge. 

 Moving ML algorithms to the edge can also be perceived as a major initiative for addressing 

additional requirements besides latency. FL also reinforces system security [10], [15] and power 
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consumption [14] - two major development metrics in embedded systems design [16]. Security is 

increased as user data is kept on the data source and not transferred through a network, which reduces 

the attack surface. Power consumption decreases as the severe reduction of data transferred within a 

network reduce the energy dissipated on communication services. 

 However, this new computing paradigm comes with a new set of constraints, which are imposed 

by the tight resources available on the devices typically deployed at the deep edge [17]. Microcontroller 

units (MCUs) feature: 

1. Limited memory footprint: Typical MCUs have their memories (RAM and Flash) limited to some 

hundreds of KBs or few MBs [15]. This calls for techniques to prune the input and output data 

of an artificial neural network (ANN), as well as for techniques to shrink and prune their internal 

weights. 

2. Limited compute resources: The computational power is usually low on MCUs [17]. However, many 

classification tasks have always-on and real-time requirements, which limits the total number of 

operations per ANN inference and training. 

 Recent advances have made it possible to efficiently shift the inference part of an ML service to 

low-power MCUs. The most recent Arm Cortex-M and RISC-V (RV32IMCXpulp) MCUs already feature 

instruction set architectures (ISAs) that support single instruction multiple data (SIMD) tuned to speed up 

the inference pass of a quantized ANN with minimal accuracy loss [18]. Supported by open-source 

libraries such as CMSIS-NN and PULP-NN, porting an ANN to these families of MCUs is already a 

straightforward process. Nevertheless, to the best of the authors' knowledge, the training pass of an ANN 

has never been explored in this family of MCUs. Strictly confining the training pass to the cloud server 

fails the founding principles of FL, imposing the transaction of high volumes of private data over a network. 

Furthermore, shifting only the inference pass to the edge still overloads cloud servers with the full training 

process, which may disrupt unpredictable latencies when edge devices try to adapt to the surrounding 

environment by model retraining. 

1.2 Aim and Scope 

 The main goal of this MSc thesis is the design and development of an FL framework tailored for 

the tight resource constraints of Arm Cortex-M MCUs. Before delving into more depth, it's important to 

note that the system must allow edge devices to infer and adapt to their surroundings even when there's 

no reliable contact with the cloud server. Furthermore, as the work targets Arm Cortex-M MCUs, the 
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inference pass is considered to run upon the CMSIS-NN API. This ensures that this family of MCUs in the 

ML sector is compatible with current state-of-the-art research. Nevertheless, the framework must follow a 

modular architecture to allow future compatibility with other computing architectures and scale well with 

the growing number of connected devices. 

 In terms of the training algorithm, the research must begin with a review of the conventional 

methods for training ANNs. The evaluation aims to find a training method optimizable for Arm Cortex-M 

MCUs. The chosen algorithm is optimized for maximum speed and minimal memory footprint. A version 

of the training algorithm that only works with int-8 data must be built as the first step toward quantization 

training. Furthermore, the model accuracy, latency, and memory footprint of the float-32 and 8-bit 

versions must be compared. 

 An algorithm must be designed for the cloud server to combine the local parameters provided by 

edge devices. First and foremost, state-of-the-art aggregation approaches must be evaluated, with 

emphasis on avoiding data poisoning. If the current state-of-the-art aggregation algorithms' security 

safeguards are insufficient, a new algorithm must be developed. A malicious edge device cannot affect 

the accuracy of other FL networks because of this design constraint. 

 A framework that follows the set of goals defined above may unlock the paradigm shift of ML 

services to the deep edge, mainly composed of low-power MCUs, such as Arm Cortex-M. The main 

objectives for this work are outlined below: 

• Design and develop an FL system architecture; 

• Design and develop a lightweight training algorithm that meets the stringent requirements of ARM 

Cortex-M; 

• Design and develop an algorithm for a reliable global model update that merges the ML parameters 

supplied by edge devices while avoiding biased models. 

1.3 Dissertation Structure 

 This document divides into five main chapters, and this subsection outlines each chapter's content. 

The present chapter (Chapter 1) introduces the problem that this MSc thesis addresses, and details the 

objectives that must be achieved to provide a reliable solution for that problem. 

 Chapter 2 splits into two main subsections: (i) background knowledge and (ii) related work. The 

fundamental concepts are presented in the first subsection. The subsection relies on two main topics that 

consist of machine learning key-knowledges and federated learning concepts. The second subsection 
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relies on developed work on this research area. The research scrutinizes academia and industry solutions 

proposed in the recent past.  

 Chapter 3 outlines the design and development of the mechanisms to port the ML process to the 

deep edge devices. The chapter splits into three main topics: (i) system architecture, (ii) edge training, 

and (iii) FL server. The first subsection aims to outline the federated learning system (FLS) design and 

the communication workflow. The second subsection outlines the design of the deep edge training 

algorithm (L-SGD). Finally, the third subsection focus on the aggregation mechanism (R-FedAvg). 

 Chapter 4 presents the experimental results of the tests performed on the different FL framework 

processes are presented. The chapter is divided into two main sections, which address the results for the 

training (L-SGD) and aggregation algorithms (R-FedAvg). The first subsection evaluates the training 

algorithm under three defined metrics: (i) accuracy, (ii) latency, and (iii) memory footprint. It evaluates L-

SGD against SGD and quantized L-SGD against floating-point L-SGD. The second subsection evaluates 

the aggregation algorithm (R-FedAvg) for these same metrics and under different data partition and 

perturbation scenarios. 

 Finally, Chapter 5 discusses the results of the developed work, pointing out some found limitations. 

The chapter ends with future work suggestions that intend to solve some current limitations and extend 

the functionalities of the developed system. 
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Chapter 2 

 

State of the art 

 This MSc thesis aims to design and develop an FL framework for next-generation ML systems. The 

proposed framework is composed of a decentralized learning system architecture and a lightweight 

training algorithm. The deployment target of the training algorithm is the ARM Cortex-M family of MCUs. 

The current chapter outlines the state-of-the-art, which covers the FL fundamental concepts and 

technologies. Consequently, this chapter splits into two sections. The first subsection focuses on providing 

ML background knowledge to applications development and mechanisms to port these applications to 

the embedded environment. The second subsection analyzes current state-of-the-art solutions for FLS. 

2.1 Background 

  This section covers some concepts essential for a critical analysis of FLS. The first subsection aims 

to cover the main concepts to develop this work. It includes an analysis of six different topics: (i) ML, (ii) 

ANN, (iii) clustering algorithms, (iv) training algorithms, (v) ANN Quantization, and (vi) FL. 

2.1.1 Machine Learning 

 ML, a subfield of Artificial Intelligence (AI), can be defined as a set of algorithms with the ability to 

learn without being explicitly programmed, based on the experience obtained by the previous analysis of 

data [19]. It aims to design and develop algorithms to search patterns, allowing the system to build a 

model capable of performing predictions over unseen data. After all, the goal of ML is to generate the 

rules of a specific environment, based on examples of the rule’s application [20]. 

 Implementation of ML algorithms follows two sub-processes: the training phase, based on collected 

data, and the prediction/inference phase, based on new data that the model has no previous information. 

In the first phase, the ML algorithm must extract patterns from the provided training data to develop a 

predictive model. In the second phase model performs data-driven predictions [4], [21]. This phase 

matches the inference process and is processed after model deployment. Model training process finishes 

when it meets a metric requirement, such as accuracy, precision, recall, or F-Score.  Figure 2.1 shows a 
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graphical representation of the different processes involved in the ML development workflow and the 

connection between them. 

 

Figure 2.1: ML development workflow 

 ML algorithms rank into three learning subfields: supervised, unsupervised, and reinforcement 

learning [19]. Supervised learning focuses on the relation between inputs and outputs, where the main 

goal is to establish a function able to perform a prediction for new and unseen input data [19]. Therefore, 

a model trains with input samples and the respective desired output (labeled data). During this process 

model's parameters are updated to reduce the magnitude of a loss function, where the goal is to minimize 

the difference between the predicted and the expected values [22]. To ensure that model can perform 

predictions on unseen data, its development must consider a certain degree of generalization during 

training, avoiding the overfitting problem. Supervised learning splits into two sub-fields: classification, 

where the goal is to predict the category inside the discrete number of possible outputs, and regression, 

which pretends to predict continuous values for the incoming data [23]. Some common applications of 

supervised learning include predictive analysis, email spam detection, patterns detections, as well as 

human-related activities, such as natural language processing, image classification, and even sentiment 

analysis [22]. 

 In contrast, unsupervised learning algorithms overcome the supervised approach when the 

available training data is not labeled. In this case, the main goal is to learn how a set of samples can be 

correlated based on hidden patterns. Contrary to supervised learning, there are no output labels to predict. 

Consequently, there are no absolute error measurements. Unsupervised addresses into two sub-fields: 

clustering, which consists of grouping elements based on their similarity, and dimensionality reduction, 

which is the process of reducing the number of features in a given dataset while keeping the most relevant 

information [24]. Some conventional applications of this learning method include object segmentation 

[25], similarity detection [26], and automatic labeling [27]. Thanks to the last referred application, it is 

possible to use supervised learning when it is necessary to categorize a large amount of data with a few 
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labeled examples, or when there is a demand to impose some constraints to clustering algorithms [24]. 

This new approach is denominated as semi-supervised learning since it is a mashup of both described 

learning methods. 

 When the interaction with the environment is very dynamic and not deterministic, being impossible 

to perform error measures, it is necessary to integrate an algorithm capable of maximizing its performance 

based on interactions with that same environment. In this segment, reinforcement learning comes up as 

a set of algorithms in which the training process relies on the feedback given by the interaction with the 

environment. Such feedback can be positive, usually denominated as a reward, or negative, also 

designated as a penalty. The goal of reinforcement learning is to automatically determine the ideal 

behavior of a system, trying to get the highest immediate and cumulative reward, which means that the 

decisions taken by the system are, within a specific context, correct [24]. 

2.1.2 Artificial Neural Network (ANN) 

 ANNs are a set of information processing structures based on the biological nervous system. The 

goal of these mechanisms is to solve classification and regression problems [23].  The architecture of an 

ANN follows the human brain's nature. The interconnection of multiple nodes, where each one represents 

a neuron, builds an analogy to the human brain. Each cell receives one or multiple signals as input, in 

biology terms denominated as synapsis. The input of a given node is the output of a previous node 

multiplied by a weight, representing the connection of multiple dendrites on the human brain [28]. Then, 

the product of every operation is summed, obtaining the total input signal to which a bias value is added. 

After this sum, the result is filtered by an activation function, producing the neuron output, which can be 

passed as input to other neurons, forming complex ANNs [28]. Figure 2.2 shows the described process. 

 

Figure 2.2: Model of a neuron in an ANN 
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 Due to the large number of nodes that constitute an ANN, there is a need to manage the 

connections between them – define an ANN architecture. The connection setting between different nodes 

sets the network as feed-forward or feedback. In feed-forward ANNs, nodes are grouped into layers, and 

only one-direction data flow is allowed. This way, the output of a given layer matches the input of the 

following layer. Consequently, there are no feedback loops. This way, the layer's output does not affect 

itself. Otherwise, the feedback network has feedback paths, meaning that a signal can travel in both 

directions using loops. Hence, the outputs computed from previous layers are fed into the neural network, 

introducing a memory capacity in the process. Furthermore, each node is connected to all other nodes, 

working simultaneously as input and output [29]. 

 The activation function is part of each node. As previously described, the computation of the input 

data of a node is filtered through the integration of an activation function, which is a mathematical function 

to delimit the output range of a single neuron [28]. These functions can either be linear or non-linear. The 

function choice process falls on the domain application of the neural network, which can be part of areas 

such as object recognition and classification, speech recognition, or even healthcare applications [30]. In 

the linear activation functions, the neuron only maps the inputs and introduces an output range. The non-

linear functions can truncate the output by limiting the output range. The most common activation 

functions as well as their mathematical expression are detailed in Table 2.1. 

Table 2.1: Activation functions 

Activation function Mathematical expression 

Binary Step function {
0 𝑓𝑜𝑟 𝑥 < 0
1 𝑓𝑜𝑟 𝑥 ≥ 0

 

Hyperbolic Tan (tanh) 
𝑒𝑥  −  𝑒−𝑥

𝑒𝑥  + 𝑒−𝑥
 

Rectified Linear Units (ReLU) {
0 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

 

Sigmoid 
1

1 + 𝑒−𝑥
 

SoftMax 1 +
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑘
𝑗=1

 

 As there are a set of configurable parameters in an ANN, there is a training process where those 

parameters, such as weights and bias, are tuned to improve the ANN performance, usually measured in 

terms of accuracy, recall or precision. The training can be performed under a supervised, unsupervised, 

or reinforcement approach, as previously described. The selection of a loss function is related to the 
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application domain. Probabilistic losses, regression losses, or hinge losses “maximum-margin” 

classification, are three categories of loss functions with different mathematical approaches, being each 

one of them composed per multiple functions. 

2.1.3 Clustering Algorithms 

 On the opposite side of supervised learning, unsupervised algorithms do not depend on a labeled 

dataset. This paradigm shift allows the analysis of large amounts of data through pattern identification 

[31]. Clustering algorithms are unsupervised learning methods that allows the organization of similar 

instances into clusters, as is presented in Figure 2.3. Input samples with similar characteristics belong 

to the same class. This approach allows the implementation of anomaly detection such as fraud or 

malicious operations [32]-[34]. The optimization of datasets to feed supervised learning algorithms is 

relies on unsupervised methods to find samples that don't fit into a certain prediction class. This section 

outlines a brief analysis of two clustering algorithms: (i) k-means clustering and (ii) hierarchical clustering. 

 

Figure 2.3: Data clustering 

 k-means: K-means clustering is an algorithm that aims to split data into k clusters. The number 

of selected clusters matches the number of centroids used in the clustering process. Each sample assigns 

to a cluster based on the distance to the near centroid. After classifying each sample, there is a cluster's 

centroids recalculation, and the process repeats [35]. However, k-means cannot evaluate which clustering 

is the best option, as it happens on supervised learning. The only option is to keep track of the clusters 

and their total variance and repeat the process with different starting points for each centroid. 

 Improving dataset quality is a practical application of k-means [36] in which k is an easy tunable 

parameter. In some scenarios, k values demand an iterative tuning process to achieve low variance 

values. In an extreme case, variance equals zero when k is equal to the number of samples to be 

clustered. However, this approach leads to a redundant relation between samples, which goes against 

the clustering purpose. This way, the elbow method is usually used to tune the k parameter. Figure 2.4 



 

 

Chapter 2 – State of the art 

A Federated Learning Framework for the Next-Generation Machine Learning Systems 20 
Diogo André Veiga Costa - Universidade do Minho 

presents a hypothetical example of the elbow method implementation. In this case, variance reduction is 

achieved at a high rate until the setting of k equals two. After that, increasing the k values does not present 

a significant variance reduction.  

 

Figure 2.4: Elbow plot method 

 Hierarchical clustering: Hierarchical clustering is a distinct technique to clustering. Rather than 

establishing the number of clusters, hierarchical clustering algorithms try to create a hierarchy of clusters. 

Furthermore, each cluster border is limited by a threshold distance. The construction of a dendrogram, 

as shown in Figure 2.5, is a basic method for defining clusters. In this case, two clusters are easily 

identified. However, the threshold sets the clustering granularity. The higher the threshold value, the lower 

number of clusters. Furthermore, hierarchical approaches can either be divisive (top-down) or 

agglomerative (bottom-up) [37]. The divisive technique requires a way for iteratively splitting clusters until 

samples are clustered independently. The agglomerative technique takes each sample as a single token 

and defines each sample as a member of a cluster until all of the data is gathered into a single cluster. 

To summarize, divided clustering is a more difficult procedure. The top-down technique, on the other 

hand, yields more accurate outcomes. 

 

Figure 2.5: Hierarchical clustering 
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2.1.4 Training Algorithms 

 The ANN training process is an optimization problem [38]. The optimization target is the model’s 

weights that are optimal when the model’s prediction error is minimum. The learning process of an ANN 

is the process of updating weights values taking the model to improve prediction precision. As a result of 

a large number of configurable parameters of an ANN, the training process is an iterative and exhaustive 

task. In opposite to the ANN inference process where there is feed-forward pass [39], the model update 

requires a different approach. Minimum loss value requires multiple backward pass steps [40].  

 The backpropagation technique needs to perform for several iterations/epochs before reaching an 

optimal parameter configuration. For this reason, there are multiple stopping rules to define the end of 

the training process. The most common stopping rules are (i) stop after a specified number of epochs, 

(ii) stop when an error measure reaches a threshold, and (iii) stop when the error measure has seen no 

improvement over a certain number of consecutive epochs [41]. Since the training process can iterate 

the entire dataset multiple times through the definition of multiple epochs, it is essential to avoid data 

layout correlation during the training. This means that the dataset layout must not induce any learning 

effect on the training model. This way, shuffling data is one of the most important steps in data preparation 

to achieve the best prediction accuracy. Furthermore, there are three popular shuffling mechanisms: (i) 

Fisher-yates (old version), (ii) random values sorting, and (iii) Fisher-Yates (modern version). 

 Fisher-Yates (old version): Fisher-Yates’s algorithm (old version) [42] suggests the random 

selection of an element from the non-shuffled elements until there is no unshuffled data. The original 

approach design does not aim at software devices. Thus, time complexity relies on data size due to 

algorithm complexity which is unscalable to large datasets. The memory allocation of this mechanism 

equals the original data size. 

         Random values sorting: An algorithm tweak performs by generating random values and assign 

them to each data index. Further, the generated numbers sorted in ascendant or descendent order create 

the shuffled data. Once more, the time complexity is directly affected by the amount of data to be shuffled. 

Thus, time complexity can escalate very fast, even still at a lower rate than the first solution. However, 

space complexity keeps the same, requiring the memory allocation equal to the original data size that 

doubles the original storage usage [42].  

 Fisher-Yates (modern version): The most recent version of Fisher-Yates was developed to 

minimize both time and space complexity [42]. This shuffling algorithm operates directly on the original 

data by splitting the unshuffled data and already shuffled data. An index pointing to the last shuffled 
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sample (𝑙𝑎𝑠𝑡𝑖𝑛𝑑𝑒𝑥) is defined and a random number between zero and the last number index 

(𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑖𝑛𝑑𝑒𝑥) is generated. The sample at the index 𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑖𝑛𝑑𝑒𝑥 is swapped with the sample in 

the 𝑙𝑎𝑠𝑡𝑖𝑛𝑑𝑒𝑥 position, and the 𝑙𝑎𝑠𝑡𝑖𝑛𝑑𝑒𝑥 is decremented. The process iterates over the data until de 

last index matches the data's first position meaning that the dataset is shuffled [42]. Table 2.2 present 

different shuffling algorithms. 

Table 2.2: Shuffling algorithms comparison 

Solution Time Complexity Space Complexity 

Fisher-Yates (old version) O(n^2) O(n) 

Random values sorting O(n log(n)) O(n) 

Fisher-Yates (modern version) O(n) O(1) 

2.1.4.1 Gradient Descent (GD) 

 The GD is the most basic optimizer. The optimization relies on the first-order derivative of a loss 

function. Based on the value returned by the loss function, the GD calculates the direction of change of 

the model's parameters (weights and bias). Updating the parameters multiple times through this 

mechanism leads to an optimal solution that reduces the prediction loss. The low computational 

complexity of this algorithm allows its deployment on deep edge devices. However, this mechanism 

requires an entire dataset at a time to update the weights and bias, which substantially increases the 

memory footprint [43]. 

2.1.4.2 Stochastic Gradient Descent (SGD) 

 SGD is an extension of GD that aims to tackle the large memory footprint concern [44]. SGD uses 

only one sample at a time rather than the entire dataset. Besides the memory footprint reduction, SGD 

is less vulnerable to local minima stuck. However, the time to complete a single epoch is large compared 

to the GD algorithm. A simple example of an ANN, where it is analyzed the computation process of the 

backpropagation algorithm, is represented in Figure 2.6. For simplicity, the model considers weights only 

and does not include bias values. The ANN is feed with a training sample, and the input features are 

propagated through the network. For each neuron, an input (𝑖𝑛𝑛𝑒𝑢𝑟𝑜𝑛) and an output (𝑜𝑢𝑡𝑛𝑒𝑢𝑟𝑜𝑛) value 

are defined, as well as an activation function (𝐹). The forward pass equations of the first hidden layer are 

defined in Equations (1)-(4). The output layer follows the same method. 
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Figure 2.6: ANN overview  

𝑖𝑛ℎ1
= 𝑖1 ∗ 𝑤1 + 𝑖2 ∗ 𝑤2 (1) 

𝑖𝑛ℎ2
= 𝑖1 ∗ 𝑤3 + 𝑖2 ∗ 𝑤4 (2) 

𝑜𝑢𝑡ℎ1
= 𝐹(𝑖𝑛ℎ1

) (3) 

𝑜𝑢𝑡ℎ2
= 𝐹(𝑖𝑛ℎ2

) (4) 

 After producing the model prediction, a loss function calculates the distance between the prediction 

of the ANN and the corresponding true label. This error is optimized using the so-called training 

algorithms. From the set of training algorithms available, the most prominent is the SGD, which provides 

information about the direction of the weight update. According to SGD, the update of a given weight is 

calculated as described in Equation (5), in which 𝜂 is the learning rate. 

𝑤𝑖
+ = 𝑤𝑖 − 𝜂 ∗

∂𝐸𝑡𝑜𝑡𝑎𝑙

∂𝑤𝑖

 (5) 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤1

= (
𝜕𝐸𝑜1

𝜕𝑖𝑛𝑜1

∗
𝜕𝑖𝑛𝑜1

𝜕𝑜𝑢𝑡ℎ1

+
𝜕𝐸𝑜2

𝜕𝑖𝑛𝑜2

∗
𝜕𝑖𝑛𝑜2

𝜕𝑜𝑢𝑡ℎ1

) ∗
𝜕𝑜𝑢𝑡ℎ1

𝜕𝑖𝑛ℎ1

∗
𝜕𝑖𝑛ℎ1

𝜕𝑤5

 (6) 

   After comparing the model prediction with the true label, the loss function calculates the loss 

that will be used to update the weights in the backward pass. In the backward pass, the effect of each 

weight in the prediction error is calculated. This way, each weight is updated proportionally to its error 

magnitude effect. The main goal is to reduce the error disrupted by each weight to ideally zero. Since an 

error at a given layer propagates to the forwarding layers, the weights are updated only after the 

computation of the error propagation effect. The error propagation effect is represented in Equation (5) 

by the term 
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤𝑖
.  The calculus of this term follows a chain rule as detailed in Equation (6). As can be 
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observed for the particular case of 𝑤1, the chain rule depends on the values returned in the previous 

training iteration for the weights 𝑤5 and 𝑤7. This pattern is verified for any weight in a hidden layer of an 

ANN and is responsible for making SGD require the allocation of a memory block that doubles the size of 

the weights. 

2.1.4.3 AdaGrad 

 The major obstacle of GD-based approaches is the setting of the learning rate. Both GD and SGD 

mechanisms keep this hyperparameter constant along the training process. AdaGrad [45] is a solution 

that allows the implementation of an optimizer without a manual tunning of the learning rate. Moreover, 

this hyperparameter decreases as the number of training iterations increase. Nevertheless, as the number 

of iterations becomes very high, the learning rate decrease to a very low value, which leads to a much 

slower convergence [43]. Adagrad automatically adjusts the learning rate based on a parameter. To avoid 

overshooting the minimum value, parameters with larger gradients or frequent updates should have a 

slower learning rate. Parameters with low gradients or few updates should increase the learning rate to 

ensure that they are quickly trained. AdaGrad divides the learning rate by the sum of squares of previous 

gradients of the parameter.  When the sum of the squared gradients is high it divides the learning rate by 

a large number, leading the learning rate to decrease. Similarly, if the total of the squared prior gradients 

is low, the learning rate is divided by a smaller number, resulting in a high learning rate. This means that 

the learning rate is inversely proportional to the sum of the squares of the parameter's prior gradients. 

Equation 7 outlines the AdaGrad update process. 

𝐺𝑡 = ∑ 𝑔τ

𝑡

τ

× 𝑔τ
𝑇 

𝑤𝑡+1 = 𝑤𝑡 − 𝜂 ∗ 𝑑𝑖𝑎𝑔(𝐺𝑡)
−1
2  

(7) 

2.1.4.4 Adam 

 The introduction of the exponential update of the learning rate showed improvements in the training 

process execution time. Moreover, exploring this technique led to the development of new mechanisms. 

Adam introduces a new term to the calculus of the learning rate update. Adam [46] optimizer stores both 

the first and second-order moment of the gradient, rather than storing exponential decaying averages of 

the square of gradients to update the learning rate [43]. First, it computes the exponentially weighted 

average of past gradients (mt). Then, it computes the exponentially weighted average of the squares of 

past gradients (𝑣𝑡). Then, these averages have a bias towards zero and to counteract this a bias correction 
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is applied (𝑚𝑡+1, 𝑣𝑡+1). Lastly, the parameters are updated using the information from the calculated 

averages. This process is outlined by Equation 8. Adam optimizer demands the tunning of three 

hyperparameters: β1, β2, and 𝜂. The term ϵ is a very small value introduced to avoid division by zero. 

𝑚𝑡+1 = β1 × 𝑚𝑡 + (1 − β1) × 𝑔𝑡 

𝑣𝑡+1 = β2 × 𝑣𝑡 + (1 − β1) × 𝑔𝑡
2 

𝑚𝑡+1 =
𝑚𝑡+1

1 − β1
𝑡  

𝑣𝑡+1 =
𝑣𝑡+1

1 − β2
𝑡  

𝑤𝑡+1 = 𝑤𝑡 −
𝜂

√𝑣𝑡+1 + ϵ
× 𝑚𝑡+1 

(8) 

2.1.4.5 Gap analysis 

 In comparison to other optimizers, the GD [43] optimizer stands out for its computational simplicity. 

This method uses the complete training dataset, which increases memory footprint. Furthermore, SGD 

[44] mitigates this impact by using a subset of the dataset in each iteration (mini-batch). Despite the 

memory decrease achieved by employing this method, the process becomes slower, and the memory 

footprint for deep edge devices is still prohibitive. Nonetheless, other methods for speeding up the training 

process have been proposed (comparison depicted in Table 2.3). 

Table 2.3: Functionality of optimizers 

Optimizer 
Tunable 

parameters 
Advantages Disadvantages 

GD [43] 1 Low computational complexity 
High memory footprint 

Vulnerable to local minima stuck 

SGD [44] 1 
Low computational complexity 

Reduced memory footprint 

Vulnerable to local minima stuck 

Slower than GD 

AdaGrad [45] 1 Automatic learning rate decay 
Slower convergence at later 

iterations 

Adam [46] 3 Faster training 

High memory footprint 

Higher number of tunable 
parameters 

 AdaGrad [45] is proposed as a possible solution for reducing the training process execution time. 

This technique emphasizes the continuous adjustment of the learning rate resulting in a shorter training 
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period. The convergence process gets significantly slower as the number of iterations grows. To 

counteract this, Adam [46] outperforms the other algorithms by showing the fastest training mechanism 

and reducing the effect of increasing the number of training steps. These techniques are quicker than 

GD-based mechanisms, but their resource usage is insufficient to fulfill the hardware constraints of the 

target platforms. The computations performed by these approaches are more exhaustive than those 

performed by GD-based methods, in addition to the significant increase in memory use. As a result, there 

is a demand for a solution that assures the most efficient use of resources while still ensuring appropriate 

training times in a federated training environment. 

2.1.5 ANN Quantization 

 ANN models training typically performs over 32-bit floating-point data, which gives a high precision 

that is usually not required during inference [47]. Research has shown that neural networks with low-

precision fixed-point representation can produce equivalent results to the traditional approach [47], [48]. 

Further, a fixed-point quantization approach can reduce the cost of floating-point computation and the 

memory footprint for storing both weights and activations, two critical metrics in resource-constrained 

platforms. This process, known as quantization, involves the encoding of (i) the sign, (ii) the integer part, 

and (iii) the fractional part of a float in a single integer value. Quantized values are typically represented 

in 𝑄𝑚. 𝑛 format, where 𝑚 specifies the number of bits for the integer part and 𝑛 the number of bits for 

the fractional part. Quantization not only decreases the inference latency but also reduces the memory 

footprint of ANNs [49]. Nevertheless, quantization must always attend to the ISA of the platform where 

the ANN will be deployed. This is fundamental to speed up memory access and math operations. 

Moreover, the quantization process relies on five fundamentals: (i) scaler and zero-point, (ii) quantization 

aware training vs. post-training quantization, (iii) quantization granularity, (iv) fixed bit-width vs mixed bit-

width, and (v) static vs. dynamic quantization. 

 Scaler and zero-point: The quantization of a floating-point value always requires scaling and 

zero-point factors [50], [51]. Scalers are typically calculated as detailed in Equation 9 and require the 

previous definition of the quantization format 𝑄𝑚. 𝑛 and the range of floating-point values to be quantized. 

The zero-point is usually calculated as detailed in Equation 10 and is always rounded to an integer value. 

𝑠𝑐𝑎𝑙𝑒𝑟 =
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

2𝑛 − 1
 (9) 

𝑧𝑒𝑟𝑜 = −𝑟𝑜𝑢𝑛𝑑(𝑥𝑚𝑖𝑛 ∗ 𝑠𝑐𝑎𝑙𝑒𝑟) − 2𝑛 − 1 (10) 
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 Quantization aware training vs. Post-training quantization: As quantization reduces the 

number of bits to represent a value, saturation is a common problem that affects the accuracy of a 

quantized ANN. A common strategy to address this problem is to perform quantization-aware training, in 

which the quantization error is considered as part of the loss returned by the loss function [50], [52]. 

Nevertheless, this comes at the cost of increased overhead and latency in the training pass. In contrast, 

post-training quantization does not incur additional overhead during training time, as quantization is only 

performed after the training of the floating-point ANN. 

 Quantization granularity: The quantization granularity must consider two metrics: (i) impact on 

model accuracy and (ii) computational cost [50], [51]. Computing the scaling factor to each weight and 

activation leads to almost null accuracy loss. Nevertheless, this is not feasible as each neuron requires a 

specific scaling operation during inference. Besides increasing the decision latency, it also tremendously 

increases the memory footprint of the quantized ANN, as scaling and zero factors need to be stored for 

each weight. The most common quantization strategies consider a layer-by-layer or filter-by-filter 

granularity [50], [51]. 

 Fixed bit-width vs. mixed bit-width: In fixed bit-width, the number of bits to represent a given 

weight or activation is the same in the whole ANN [50], [52]. In contrast, in a mixed bit-width setting, the 

number of bits to represent weights and activations may vary between layers or filters, depending on the 

quantization granularity [50], [52]. 

 Static vs. dynamic quantization: In static quantization, the quantization format is set before 

inference, using a representative dataset [50], [51]. In contrast, dynamic quantization computes the 

quantization format during the inference process for each input [50], [51]. Therefore, model parameters 

and activations are stored in low-precision bit-width but the operations are performed in floating-point 

data. For each calculus, this approach requires the dequantization of the inputs and the quantization of 

the outputs. Dynamic quantization lowers the impact of quantization on model accuracy when compared 

with the static approach; however, it incurs an overhead that may be prohibited for Arm Cortex-M MCUs, 

especially those not featuring hardware floating-point units (FPU). Dynamic quantization is usually used 

when memory is a concern but processing power is not. 

2.1.6 Federated Learning 

 ANN’s inference process is a heavy process resulting from the operations involved in each layer 

computation. Considering that typically ANNs use parameters (weights and bias) defined as 32-bit floating-

point values, the inference process becomes an even more demanding problem, especially for devices 
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that do not feature FPU. Since that edge hardware is usually resourceless, most ML applications follow a 

centralized approach. This approach takes the inference process to be performed on the cloud, reducing 

the edge overload. In centralized ML systems, the inference process runs on the cloud. Lastly, the 

prediction is sent back to the edge [50], [51]. 

 The main goal of FL is to port the inference and at least part of the training process to the data 

source [53]. Edge devices are considered part of a network and are directly connected or connected 

through a central server[54]. Nevertheless, each edge device is considered autonomous as it can infer 

about the surrounding environment without any interaction with third parties. Furthermore, they can 

autonomously adapt to the surrounding environment by performing model re-training. In the re-training 

process, the architecture of the ML model is usually maintained and only the weights or parameters are 

updated. Nevertheless, some authors also propose the update of the ML model architecture [55]. Edge 

devices will be periodically asked to share their new models or model parameters. Figure 2.7 depicts the 

workflow of a FLS. 

 

Figure 2.7: Overview of an FLS 

 The decentralized approach also deals with the privacy risk of centralized learning. Moving the 

training process to the edge allows data-held on the device. The development of smart systems requires 

the collection of user data, usually private.  User private data is not transferred between nodes and 

servers, reducing the attack surface of ML systems. Instead of privacy-sensitive data, only model-related 

data is transmitted. Thus the communication process is reduced to the download of training plans and 

the upload of training results. The uploaded results are aggregated on the server to create an updated 

model based on multiple local training processes. 

 Private FLS faces a challenge: efficiently distribute computation to data centers under the constraint 

of privacy models [56]. Further, due to the energy consumption concern, complex training tasks can not 
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be demanded by devices. Considering edge hardware constraints and data-privacy concerns, FLS should 

be robust enough to manage a large number of parties, considering the possibility of connection issues 

between each device and the central server. 

 Li et al. [56] proposed a taxonomy for the design of a FLS. As shown in Figure 2.8, the taxonomy 

of FLSs comprises six components: (i) data partitioning, (ii) ML model, (iii) privacy mechanism, (iv) 

communication architecture, (v) scale of federation, and (vi) motivation of federation. There are three 

components essential to define the training method at the edge and synchronizing with the server: (i) data 

partitioning, (ii) communication architecture, and (iii) scale of federation. 

 

Figure 2.8: Taxonomy of FL 

 Data partitioning: Data partitioning can be categorized as horizontal, vertical, and hybrid, 

depending on how data distributes over the sample and feature spaces [57]. While the sample space 

matches the set of all possible input samples, the feature space is related to the properties of the input 

data. Horizontal, or sample-based data from different devices, share the same feature space but low 

intersection on the sample space (Figure 2.9a). This strategy is a common data partitioning in FLSs due 

to the cross-device scenario, where multiple devices try to improve their model performance through FL. 

The training process performs locally where devices share the same feature space and use the same 

model architecture. The main challenge is to aggregate models from different parties in the cloud server. 

Averaging all the local models has shown decent results, and it is a simple and effective approach [56]. 

 In vertical or feature-based FL, data from different devices have the same, or at least similar, 

sample space but differ in the feature space (Figure 2.9b). Vertical data partitioning usually adopts entity 

alignment techniques to collect the overlapped samples of different devices. Therefore, vertical FL is the 

process of aggregating these features and computing the training loss and gradient using multiple device 

data, preserving its privacy. There are some scenarios where datasets differ not only in the sample but 
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also in feature space. In this case, parties are a hybrid of horizontal and vertical partitions. Transfer 

learning [58] can be a solution to such scenarios (Figure 2.9c). 

 
(a) Horizontal Federated Learning 

 
(b) Vertical Federated Learning 

 
(c) Federated Transfer Learning 

 

Figure 2.9: Data partitioning in FLS 

 Communication architecture: Communication architecture is a basic design decision for the 

FL system. Typically, there are two major approaches: (i) centralized design and (ii) decentralized design. 

In a centralized design, the data flow is asymmetric. A central server is responsible for aggregating the 

ML models or parameters, returned by each edge device, and sending back the training results and the 

updated ML model [16]. In a centralized communication architecture, the data transfer between the 

manager and the edge can be (i) synchronous or (ii) asynchronous. In a synchronous setting, the central 

server is responsible for signalizing the beginning of the training pass to the edge [59]. The central server 

waits until every edge device or at least a portion of them sends the updated parameters. In an 

asynchronous setting, an edge device can start a new training pass at any time [60]. When the central 

server wants to deploy a new global ML model, it aggregates the most recent parameters available from 

each edge device. 

 Scale of federation: The number of users of a FLS defines the scale of federation of the system. 

Typically, such categorization splits into two types: cross-silo FLS and cross-device FLS [61]. In cross-filo 

FLS, there are a few parties and each one stores large amounts of data and presents high computational 

power. This is a typical situation in organizations with data privacy constraints, such as hospitals and 

bank corporations. In opposition, cross-device FLS is composed of a large set of parties, and each one 

stores low amounts of data and presents a low computation power [62]. 

2.2 Related work 

 This section is dedicated to the analysis of the current solutions, provided by the scientific 

community to implement FLSs. Rising concerns about data privacy aligned with the end of Moore's law 

and the ever-growing number of IoT devices are forcing intelligence to shift from the cloud to the deep 

edge, near to the data source. This paradigm gave rise to new computing paradigms, from which stands 
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out federated learning. In this computing paradigm, the inference and part of the training passes must 

be performed on the edge, while the cloud is left for periodic global model updates. 

2.2.1 CMSIS-NN and PULP-NN 

 Arm developed CMSIS-NN, a library to maximize the performance and minimize the memory 

footprint of ANNs, being Arm Cortex-M processors the target [12]. Neural network inference process 

based on CMSIS-NN kernels reveals a runtime/throughput improvement, as well as lower energy 

consumption [12], [63]. Figure 2.10 depicts the structure of CMSIS-NN kernels, which are composed by 

two main parts: (i) NNFunctions and (ii) NNSupportFuntions. The first one includes the functions that 

allows the implementation of neural network layers, including convolution, fully-connected, pooling, and 

activation. In contrast, NNSupportFuntions include utility functions, such as data type conversion and 

activation function tables, which are used in NNFunctions. 

 

Figure 2.10: ANN kernel structure overview 

 CMSIS-NN kernels support data in 8 and 16 bits. For this reason, a neural network being normally 

trained in float-32 has to be quantized. CMSIS-NN assumes a static quantization, with fixed bit-width, and 

conducted layer by layer. The quantization process follows the flow presented in Algorithm 1. As detailed 

in Algorithm 1, for each layer, the quantization format of the input and output data must be defined. Since 

quantization is static, you must define these formats prior to the inference time. Quantization can be 

performed either during training, using quantization-aware training, or immediately after training, using a 

reference dataset (post-training quantization). The critical point in this quantization process is the 

definition of the maximum value. The output Q-format of some layers (i.e. fully connected and 

convolutional layers) can be defined independently from the input format. As the quantization relies on a 

power-of-two scaling (Algorithm 1), the scaling of a layer output is implemented as a bitwise shift 

operation. Such adjustment is introduced over two shifting parameters: bias_shift and out_shift. Both 

parameters are calculated over Equation 11 and Equation 12 and set individually to each layer. 
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Algorithm 1: Quantization algorithm 

1:  get 𝑸𝒎. 𝒏 format: 

2:   find maximum absolute value 𝑚𝑎𝑥𝑎𝑏𝑠 

3: 
  find amount 𝑚 of bits to represent the range [−maxabs, maxabs]: the ceiling of 

log2(maxabs) 

4:   calculate amount 𝑛 of bits for the fractional part: 7 −  𝑚 

5:  convert to quantized integer: 

6:   multiply floating-point values 𝐴 by 2 powered to the number of fractional bits: 𝐴 × 2𝑛 

7:   clip quantized integers for the range [2𝑛, 2𝑛 − 1] 

 

𝑏𝑖𝑎𝑠𝑠ℎ𝑖𝑓𝑡 = (𝑛𝑖𝑛𝑝𝑢𝑡 + 𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑠) − 𝑛𝑏𝑖𝑎𝑠𝑒𝑠 (11) 

𝑜𝑢𝑡𝑠ℎ𝑖𝑓𝑡 = (𝑛𝑖𝑛𝑝𝑢𝑡 + 𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑠) − 𝑛𝑜𝑢𝑡𝑝𝑢𝑡 (12) 

 PULP-NN API is a similar solution for the RISC-V (RV32IMCXpulp) architecture [64]. The key 

innovation of PULP-NN is the support for multi-core processing. However, the support of activation 

functions is more limited - it only supports ReLU. Both APIs allow reliable execution of the inference pass 

of ANNs with negligible accuracy loss. 

2.2.2 Google Federated Learning System 

 Google is testing a FLS on Android devices through the Gboard application [65]. The base 

application consists of a keyboard predictor that, based on the current context, presents multiple 

suggestions that can be picked by the user. When the prediction process is performed it creates a history 

on-device that will further allow federated learning. 

 The implementation of FL by Google had to overcome many algorithmic challenges, such as the 

training algorithm. Typically, ML systems perform training over a large dataset partitioned homogeneously 

across servers in the cloud, using an optimization algorithm such as SGD. This approach requires high-

throughput connections to the training data, which is not feasible when data is distributed across 

thousands or millions of devices that have associated a latency-response due to communication process, 

a problem that is worsening as a result of intermittent availability for training. 

 To face bandwidth and latency limitations, Google developed a federated averaging algorithm, able 

to train deep networks using 10 to 100 times fewer communications in comparison to a classical 

federated version of SGD [59]. Through a round-based approach, the training process is performed over 

an FL population where only some devices are chosen to participate in a specific task. Therefore, a 
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training round is defined by a procedure that consists of three different phases: (i) selection, (ii) 

configuration, and (iii) reporting [16], and its representation is present in Figure 2.11. 

 

Figure 2.11: FL rounds system protocol 

 The selection process chooses a portion of the potential devices announcing availability to the 

server in a specific time window, forming a subset of selected devices that are invited to participate in an 

FL specific task. A device should only announce the availability to the server when it meets the eligibility 

requirements. The scheduler must ensure that a device is only selected to participate in the update 

process if it is in an idle mode, plugged in, and on a free wireless connection [65]. Once that a device is 

selected, a bi-directional stream is set between the device and the server that allows track liveness and 

management multi-step communication. After selecting the devices to participate in a round, the server 

must respond to the remaining devices informing them to reconnect later. 

 The second phase is the configuration, where the server sends the FL plan and an FL checkpoint 

with the global model to each of the devices. The selected aggregation mechanism (simple or secure 

aggregation) is the base of server configuration [16]. After each device receives the FL plan, the training 

process must be performed, and the results sent back to the server. The final phase of a round, the 

reporting phase, is where the server waits for devices' responses and aggregates them using an 

aggregating algorithm [60]. If the training round is completed, the server instructs the device when to 

reconnect and closes the existing stream. However, if the device does not respond in time the stream is 

closed and the task is considered as failed. If enough devices complete the task, the round is considered 

as completed, and the server will update its global model. Otherwise, the round is abandoned [16]. 
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 Using computational power present in modern mobile devices allows to compute higher quality 

updates than simple gradient steps, reducing the number of interactions with the server and, 

consequently, the required iterations of communication. Nevertheless, the bandwidth of the network 

infrastructure pops up as a possible limitation to Google FLS. To address this issue, Google uses random 

rotations and quantization as model compression mechanisms [60]. 

 The model updates require a secure, efficient, reliable, and scalable aggregation mechanism. This 

is achieved through the usage of a secure aggregation protocol that uses cryptographic techniques, and 

it is managed by a server that can only decrypt data if hundreds or thousands of users have participated 

in the model update. The secure aggregation protocol is built over six main cryptography primitives: (i) 

secret sharing, (ii) key agreement, (iii) authenticated encryption, (iv) pseudorandom generator, (v) 

signature scheme, and (vi) public key infrastructure [66]. A high-level view of secure aggregation protocol 

is presented in Figure 2.12.  

 

Figure 2.12: High-level overview of secure aggregation protocol used by Google FLS 

 Secret sharing: Secret sharing relies on Shamir’s t-out-of-n [67], which allows users to split a 

secret s into n shares. This way, any t shares can be used to reconstruct s, but any set of at most t-1 

shares gives any information about s. This approach is called a threshold scheme, and an efficient 

threshold scheme can be very helpful in the management of cryptographic keys. Data protection is 
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achieved through encryption methods; however, encryption key protection requires a different method. 

The most secure key management scheme keeps the key in a single and protected location. Nevertheless, 

this procedure is highly unreliable since that misfortune can make the information permanently 

inaccessible. Despite increasing the possibility of security breaches, a possible solution is to store multiple 

copies of the key in multiple locations. Using a (𝑘, 𝑛) threshold scheme, with 𝑛 = 2𝑘 − 1, it can be 

reached a consistent and robust key management scheme: the original key can be recovered even when 

[𝑛/2]  =  𝑘 − 1 of the n pieces are destroyed, but the reconstruction of the key is impossible even when 

security breaches expose [𝑛/2]  =  𝑘 − 1 of the remaining 𝑘 pieces [67]. 

 Key agreement: Key agreement consists of a set of three algorithms that provide: (i) the 

production of some public parameters (over which the scheme will be parameterized), (ii) generate a 

private-public key-pair, and (iii) combine a private key with a public one to obtain a private shared key. 

The specific scheme used in the secure aggregation protocol is the Diffie-Hellman key agreement [68], 

composed with a hash function. The main goal of key agreement is to develop systems, such the one 

presented in Figure 2.13, where two parties can communicate over a public channel with a secure 

connection. In this scheme, the public file of enciphering keys is protected from external and unauthorized 

modification. This can be achieved through the nature of the file, avoiding the need for reading protection. 

Since the file is not frequently modified, the cost of implementation of write protection mechanisms is 

reduced [68]. 

 

Figure 2.13: Public key system information flow 

 Authenticated encryption: Authenticated encryption combines confidentiality and integrity 

guarantees for messages shared between two parties and consists of three algorithms: (i) a key generation 

algorithm, (ii) an encryption algorithm, and (iii) a decryption algorithm. For security, it requires 

indistinguishability under a chosen plaintext attack (IND-CPA) and ciphertext integrity (IND-CTXT) [66], 

[69]. The guarantee is that for any attacker M that is given messages encrypted under a randomly 

sampled key c (where c is unknown to M), M cannot distinguish between unique encryptions under c of 

different messages, neither can M create new valid ciphertexts with respect to c with meaningful 

advantage. 
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 Pseudorandom generator: Secure aggregation protocol also requires a pseudorandom 

generator [70], [71] that takes in a uniformly random seed of a given fixed length and whose output space 

is the protocol input space. The usage of such mechanism grants that its output is computationally 

indistinguishable from a uniformly sampled element of the output space, once that the seed is hidden 

from the analyzer.  

 Signature scheme: Additionally, the protocol signature scheme relies on a standard unforgeable 

under chosen message attack (UF-CMA), which means that it is computationally infeasible for an external 

analyzer to find a new valid message-tag pair after querying p pairs of message-tag [72]. The scheme is 

composed by three algorithms: (i) key generation algorithm, which takes as input the security parameters 

and outputs a secret key, (ii) the signing algorithm, that takes as input the secret key and a message and 

outputs a signature, and (iii) the verification algorithm, that takes as input a public key, a message, and 

a signature, and returns a bit corresponding to validation or not of the signature.  

 Public key infrastructure: To prevent the server from simulating an arbitrary number of clients 

it is required the support of public key infrastructure. This mechanism allows users to register identities 

and sign messages using their identity, which can be verified by other users but not taken off. Secure 

aggregation protocol demands that each client registers to a public bulletin board during the setup phase. 

During this setup process each client can only register a self-key, avoiding attacking parties to impersonate 

honest users [66], [69]. 

2.2.3 Tensorflow Federated 

 

 TensorFlow Federated (TFF) is a ML and decentralized data computation open-source library, 

developed by Google. This framework allows developers to simulate decentralized computation into the 

hands of all TensorFlow users, as well as experiment with new algorithms.  

 Furthermore, base elements of TFF provide utility functions that grant non-learning computations, 

such as aggregated analysis in decentralized data. TFF splits into two layers [73]: (i) API Federated 

Learning (FLA) and (ii) API Federated Core (FCA). FLA makes available a set of high-level interfaces that 

allow developers to implement applications with the incorporation of evaluation mechanisms to measure 

the FL performance over TensorFlow existing models. Differently, FCA is a set of low-level primitives that 

allows the expression of a wide range of computations over a decentralized dataset. It is a programming 

environment for the implementation of distributed computation, such as the FL scenario. TensorFlow 
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targets to reach the major device platforms and pretends to improve the security of sensitive user data 

through the integration of technologies such as differential privacy and secure aggregation. 

2.2.4 Aggregation Mechanisms 

 In the recent past, multiple solutions have been proposed to enable decentralized learning. One of 

the main focuses of research on the FL field relies on the development of robust and reliable aggregation 

mechanisms. In this subsection, it is reviewed the most relevant aggregation mechanism developed to 

date.  

 FedAvg: McMahan et al. [59] introduced the concept of FL and proposed FedAvg, a technique for 

training a shared model across clients. The main goal of this approach is to minimize the global loss by 

performing a weighted average of the local weights and biases. Parameters are weighted by the size of 

the client's dataset. FedAvg was developed considering data heterogeneity non independent and identical 

distributed (non-IID) and the volatile availability of edge devices. FedAvg is the basis of most of the works 

developed in the FL field. 

 FedMA: Wang et al. [74] proposed FedMA, an aggregation method that aims to tackle the data 

and processing power heterogeneity on the edge for convolutional neural networks and long-short term 

memory models. FedMA builds the shared model in a layer-wise approach. At each training round, FedMA 

selects the set of edge devices to train a given model layer. The resulting weights and biases are merged 

by a matched averaging technique. Results show a reduction of communication rounds during the training 

pass and tolerance to non-IID data partition. 

 FedProx: FedProx [75] aims to tackle heterogeneity in FLS and it can be represented as a 

generalization and re-parametrization of FedAvg. The main contribution of FedProx is how it handles 

stragglers. FedProx considers that edge devices often have different resource constraints and allows 

variable amounts of work to be performed locally across devices based on their available systems 

resources. In contrast to FedAvg, FedProx aggregates the partial information returned by stragglers 

instead of dropping them out. 

 q-FedAvg: To provide a fairer accuracy distribution over edge devices, Li et al. [76] proposed q-

FedAvg. q-FedAvg introduces a penalty factor 𝑞 to the loss function of FedAvg such that edge devices with 

higher loss get a higher relative weight 𝑞. This leads the aggregation algorithm to improve the accuracy 

on the worst-performing devices. 
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 Per-FedAvg: Fallah et al. [77] addressed the lack of user personalization in the FedAvg algorithm. 

Per-FedAvg is a variant of FL which considers that the cloud should return a global ML model that users 

can easily adapt to their local dataset by performing some additional training steps on their own data. 

Fallah et al. [77] advocate that this strategy maintains all the benefits of FL while delivering personalized 

ML models to each user.  

 Gap Analysis: The different aggregation mechanisms analyzed use FedAvg as their development 

baseline since it is a simple and effective approach, which does not increase the computational complexity 

in the deep edge. This approach shows tolerance for real-world data partitions (non-IID). However, this 

approach does not prevent the definition of a model biased for a small percentage of devices. To address 

this concern different mechanisms were proposed. FedMA is a method for performing layer-by-layer 

training, minimizing the computing cost of the training process. Furthermore, it reduces the amount of 

modification that each device may make to the global model. Following that, the mechanisms FedProx 

and q-FedAvg were introduced aiming to produce a more generalized model that is equally efficient across 

all clients. As a result, the model adapts to these devices, resulting in a more accurate model. 

 However, all mechanisms focus the evaluation on a portion of centralized data. As a result, Per-

FedAvg emerges as a technique that aims to produce models that can be optimized for each local dataset. 

Although all of the approaches try to help with the feasibility of federated training, they all miss the mark 

on the same point: the impact of undesirable behaviors on the deep edge is not considered. Therefore, 

decentralization of the training process exposes a window to possible attacks following the currently 

available aggregation mechanisms. Table 2.4 depicts the reviewed aggregation mechanisms. 

Table 2.4: Functionality of aggregation mechanisms 

R&D 

Study 

Non-IID 

Data 

Use 

Personalization 
Stragglers 

Dataset 

Poisoning 

Train 

Report 

Poisoning 

FedAvg [59] Yes No Drop-out No No 

FedMA [74] Yes No n.d. No No 

FedProx [75] Yes No 
Tolerates 

partial work 
No No 

q-FedAvg [76] Yes No n.d. No No 

Per-FedAvg [77] Yes Yes n.d. No No 
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Chapter 3 

 

System Specification 

 The previous chapter uncovered the main concepts related to this MSc thesis. In addition, it also 

outlined the best practices and guidelines for the design of the deep edge and the cloud server systems. 

Consequently, this chapter specifies the proposed FLS, focusing on the overall system architecture in 

Section 3.1, the deep edge system in Section 3.2, and the FL server in Section 3.3. This chapter 

introduces the design of a lightweight training algorithm that targets the architectures of Arm Cortex-M 

and a reliable centralized aggregation mechanism to replace the FedAvg method. 

3.1 System Architecture 

 The designed system relies on a centralized FL architecture with horizontal data partitioning. As 

expected in a centralized design, our system architecture relies on two parts: (i) the edge, composed by 

Arm Cortex-M MCUs, and (ii) the cloud server. The inference and the main part of the training pass are 

confined to the edge. For the training pass, it is proposed a lightweight version of the SGD (L-SGD), 

described in Section 3.2. During the training pass, the architecture of the starting ANN remains untouched 

but its weights and biases are updated to generalize better for the data collected locally. The resulting 

weights are sent to the central server to be aggregated following a synchronous communication 

mechanism based on rounds. For weights and biases aggregation, it is proposed R-FedAvg, which is a 

more reliable implementation of the FedAvg algorithm described in Section 3.3. R-FedAvg is expected to 

be less vulnerable to data poisoners and stragglers, avoiding the creation of biased models. 

 After aggregating the weights and biases returned by edge devices, the server evaluates the new 

global ML model. As there is no user data transferred from the edge to the server, the accuracy of the 

new ML model is evaluated over a small portion of centralized data. Consequently, the accuracy in some 

devices can be penalized due to the overall model generalization. To deal with this accuracy loss, an 

additional training step is introduced after the deployment of the new global ML model in edge devices. 

This additional training iteration is also performed by L-SGD. Figure 3.1 summarizes the general workflow 

of the proposed FLS. 
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Figure 3.1: FLS overview 

3.2 Edge Training 

 Training an ANN is an exhaustive computation process due to the large amount of data used in the 

training process. Faster training typically requires more computational resources. The selection of the 

training algorithm optimizer relies on a trade-off between convergence speed and memory consumption. 

Adam shows up as the fastest and most efficient optimizer. However, the design of a training algorithm 

that targets deep edge devices must prioritize the algorithm memory footprint reduction and reduced 

computational complexity. From this perspective, the SGD mechanism shows up as the best solution. 

Although the increased latency is introduced in the learning process, the lower complexity and the 

memory requirements scalability fits the hardware constraints associated with the deep edge devices. 

Consequently, the designed algorithm relies on the SGD mechanism. 

3.2.1 Lightweight SGD (L-SGD) 

 L-SGD is a lightweight implementation of SGD, optimized for low-memory footprint and latency, 

while guaranteeing negligible accuracy loss. To evaluate the feasibility of fully-quantized training, it was 

developed three versions of L-SGD: (i) one that operates over 32-bit floating-point data, (ii) one that 

operates over 8-bit integer data, and (iii) another that operates over 16-bit integer data. As detailed in 

Section 4.1, quantized training, suing 8-bit integer data, allows a 4x reduction in memory footprint and a 

2x faster training process. However, results have shown the quantization error can compromise the 

training as it may disrupt severe accuracy losses. This arises as a consequence of the fast saturation of 

weights and bias during the first iterations of the training process.  
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Figure 3.2: Hybrid training workflow 

 In an attempt to reduce the quantization error effect disrupted by 8-bit integer data, the bit-width 

of the quantized L-SGD operands was increased to 16-bit.  As detailed in Section 4.1.4, increasing data 

precision to 16-bit reduces the quantization error effect in intermediate calculus of L-SGD. Nevertheless, 

the effect in accuracy loss is not substantial. Aligned with the increased complexity and latency, the 16-

bit integer approach underperforms the 8-bit integer method. Nevertheless, quantized training can be 

accurate for the later training iterations when the loss starts to converge to zero. In this phase, the 

magnitude of updates is so small that it is very unlikely for the weights and biases to be saturated. Given 

the background, this work proposes a hybrid mechanism and divides the training on the edge into two 

phases: (i) main and (ii) secondary. Both phases consider the same dataset as input. 

 The main training phase performs on 32-bit floating-point data and starts whenever the cloud server 

sends a training plan to the edge. The main phase is responsible for generating the ANN that is further 

sent to the cloud server as a local model update. As the ANN is stored in int-8 in the MCU, the ANN is 

dequantized to 32-bit floating-point data before the training itself. When L-SGD finishes the training, the 

ANN is quantized back again to int-8 data and sent to the cloud server, which will aggregate the weights 

and biases returned by each edge device. 

 The secondary phase starts whenever a new ANN is received on the edge. This phase is performed 

in int-8 data and can be seen as a small update to tweak the model to local dataset. To prevent overfitting, 

it is used a very low learning rate (0.1% of the learning rate used in the main phase). The ANN is assumed 

to be quantized according to the policy followed by CMSIS-NN: static quantization performed layer-by-

layer with a fixed bit-width of 8-bits. L-SGD (int-8) was selected over L-SGD (int-16) for the secondary 

training phase as the higher resolution returned by the later version is not significant at this training phase. 

Furthermore, as shown in Section 4.1.4, L-SGD (16-bit) induces higher latency and memory footprint 
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than the equivalent 8-bit version, neglecting the ultimate purpose of quantization. Figure 3.2 depicts an 

overview of the hybrid training mechanism. For both main and secondary phases, this work optimizes the 

loss according to a strategy hereinafter referred to as node delta optimization. 

3.2.1.1 Node Delta Optimization 

 Classic SGD requires the allocation of a memory block that doubles the size of the ANN parameters. 

This arises as a consequence of the error propagation effect. As detailed in Section 2.1.4.2, the update 

of a given parameter in the backward pass depends on values returned in the previous iteration for 

parameters in other layers. L-SGD reduces the memory footprint and the computation overhead of SGD 

through an optimization that we define as node delta. 

 

Figure 3.3: Node delta parameter in the chain rule of SGD 

 As shown in Figure 3.3, parameters that share the same output neuron also share some terms in 

the chain rule. These are the only terms that depend on the initial values of other weights in the ANN. L-

SGD allows a memory footprint reduction of SGD by merging these terms in a single parameter, 

hereinafter referred to as node delta. This parameter is a characteristic of each neuron in the ANN and 

its value reflects the error effect propagated from the final model output to the neuron input. Instead of 

saving all weights of the previous training iteration, L-SGD only saves a parameter for each neuron. 

Considering that the number of neurons is less than the number of weights and these difference increases 

as layers get wider, L-SGD has the potential to considerably reduce the memory footprint of SGD. The 

calculus of node delta depends on the layer to which the neuron belongs.  

 Output layer: As observed in Figure 3.3 for the output layer, the chain rule for weights with the 

same output neurons has two terms in common: (i) the loss function partial derivative and (ii) the 

activation function partial derivative. The multiplication of these two terms composes the delta for a given 

neuron in the output layer. As differentiation requires high computational power, the training algorithm is 

designed to not support the differentiation process itself, but to reduce the scope of functions subject to 
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differentiation and implement the derivative in code. For loss functions, this framework integrates two 

functions that cover most of the classification problems: (i) binary cross-entropy and (ii) cross-entropy. 

Both loss functions and the correspondent partial derivative are outlined in Table 3.1. Regarding the 

activation functions, the same functions of CMSIS-NN are supported: (i) ReLU, (ii) sigmoid, and (iii) tanH. 

The activation functions and the correspondent partial derivative functions are described in  

Table 3.2. 

Table 3.1: Loss functions supported by L-SGD. Model prediction is represented by (�̂�) and the true label by (𝑦). 

Loss function Equation 

Binary cross entropy (BCE) − ∑(yi ∗ 𝑙og(yî))

N

i=1

+ (1 − yi) ∗ 𝑙og(1 − yî) 

BCE partial derivative 
1 − yi

1 − yî
−

yi

yî
 

Cross entropy (CE) − ∑(𝑦𝑖 ∗ 𝑙𝑜𝑔(𝑦�̂�))

𝑁

𝑖=1

 

CE partial derivative 
𝑦𝑖

𝑦�̂�
 

 

Table 3.2: Activation functions supported by L-SGD. Neuron’s input is represented as 𝑥 and the output as 𝑓(𝑥). 

Activation function Equation 

ReLU {
0 𝑖𝑓 𝑥 ≤  0 
𝑥 𝑖𝑓 𝑥 >  0

 

ReLU partial derivative {
0𝑖𝑓𝑓(𝑥) ≤ 0

1𝑖𝑓𝑓(𝑥) > 0
 

Sigmoid 1

1 + 𝑒−𝑥
 

Sigmoid partial derivative 𝑓(𝑥) ∗ (1 − 𝑓(𝑥) 

TanH 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

TanH partial derivative 1 − 𝑓(𝑥)2 

 Hidden and input layers: As detailed in Equation 13, the calculus of the node delta for a hidden 

or input layer splits into two main terms. The first term (δh1
′ ) represents the propagation of the error 

effect from the ANN output to the output of the neuron. As the error is transmitted through the weight set 

to each connection between neurons, the first term is a weighted sum of the node deltas belonging to the 
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neurons in the following layers (Figure 3.4). The second term (
∂𝐴(𝑜𝑢𝑡𝑜1)

∂𝑜𝑢𝑡𝑜1

) represents the error propagated 

from the neuron output till its input and is calculated as the derivative of the activation function. The 

derivative of the activation function follows the same policy described in the calculus of node delta for 

neurons in the output layer. 

𝛿ℎ1 = 𝛿ℎ1
′ ∗

𝜕𝐴(𝑜𝑢𝑡𝑜1)

𝜕𝑜𝑢𝑡𝑜1

 

𝛿ℎ1
′ = 𝛿𝑜1 ∗ 𝑤5 + 𝛿𝑜2 ∗ 𝑤7 

(13) 

 

Figure 3.4: Calculus of node delta in hidden and input layers 

3.3 Federated Learning Server 

 As specified in Section 3.1, the centralized server is in charge of the aggregation process. Aiming 

to balance the computation cost between the server and the deep edge the server integrates the 

mechanisms to tackle the decentralization challenges. Besides reducing the local overload, this design 

decision adds a new robustness layer to local poisoning or communication security faults (even if there 

is data manipulation in the communication channel, the server can filter this effect). In this subsection, it 

is presented the design of the FL sever by covering three main topics: (i) decentralization challenges, (ii) 

aggregation mechanisms vulnerabilities, and (iii) R-FedAvg aggregation mechanism design. 

3.3.1 Decentralization Challenges 

 The decentralization of the training process on ML addresses new challenges. Although multiple 

works proposed different solutions to speed up the convergence of the learning process, there are still 

some real-world threats to FLS. The data partition is a must-consider variable of decentralized learning. 

Currently, most aggregation mechanisms reveal a weakness in balancing the training process to generate 

a model that fits every user's application without local accuracy loss [78]. Furthermore, the dataset of 
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each device can be noisy or contain non-representative samples that penalize the overall model. In 

addition, communication problems or local hardware specifications can take some devices to abort the 

training round. 

 Data partition: Since the training performs among the edge devices, the training data is 

partitioned over different users. Ideally, a dataset used in the training process must be balanced, i.e., that 

each class is represented by the same number of samples in every edge device. Furthermore, datasets 

must have the same size in different devices. This specification referred to as independent and identical 

distributed (IID) data [60], is the optimal training condition. However, the development of a FLS must 

consider real-world conditions. A common situation is the unbalanced data distribution over devices, 

where different devices vary by orders of magnitude in the number of training samples they hold [60], 

[61]. An even more realistic setting than the unbalanced data partition is the Non-IID. In Non-IID the data 

partition is unbalanced and the number of samples per class available in a given device is heterogeneous. 

Figure 3.5 depicts the different data partitioning strategies.  

 

Figure 3.5: Data partitions: IID vs. Unbalanced vs. Non-IID 

 Data poisoners: A struggle of partitioning the training data over the deep edge devices is the fact 

that there are no mechanisms to evaluate the data quality. Noise is an unpredictable and undesired factor 

that is injected into data, which penalizes the learning process [61]. An extreme scenario is premeditated 

data manipulation to subvert the ML model accuracy. A common approach to introduce noise on data is 

by adding Gaussian noise [61]. Feeding meaningless data as input produces high variance on model 

parameters, which affects the general model accuracy. 

 Stragglers: Since the updated parameters are produced in different devices, the convergence 

speed of the training process depends directly on the returned reports. Stragglers are edge devices that 

penalize the convergence of the optimization algorithm during the training process [57]. More specifically, 
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stragglers are edge devices that abort the training rounds due to communication loss with the server or 

by sending faulty training reports. 

3.3.2 FedAvg Vulnerabilities 

 FedAvg was introduced in [59] to address the aggregation of ML model parameters in a centralized 

FLS. In this aggregation algorithm, the training report of each edge device is composed of the updated 

ML model parameters and the local dataset size. As the dataset is a fundamental part of the training 

process, FedAvg considers that a fair model update must consider the distribution of data over the edge. 

Therefore, the update of a given parameter is performed as an average of the value returned by each 

edge device for that parameter, weighted by the local dataset size. The fraction of selected devices to 

participate in each training round is set by the server through a hyperparameter. FedAvg considers that 

every edge device must follow the same training plan with the same hyperparameters.  

 Data poisoning: The main flaw of already-available aggregation mechanisms is related to the 

training report. As a fair aggregation is highly dependent on the dataset size reported by each edge device, 

this parameter becomes the preferred attack surface in a FLS based on FedAvg. To not break the founding 

principles of FL, the local dataset is never transferred to the cloud server. Therefore, FedAvg cannot know 

when an edge device is cheating about its local dataset size. In FedAvg, a malicious edge device can 

subvert the global model update by simply reporting a bigger local dataset size than it is. This leads 

FedAvg to give a higher weight to parameters returned by malicious edge devices, which may disrupt the 

creation of biased ML models. Ultimately, this attack can subvert the entire FLS. Aggregation algorithms 

developed to date have never considered data poisoning as a priority (Table 2.4).  

 User personalization: Besides system reliability, the available mechanisms fail in evaluating the 

trained model. The FedAvg variations aim to tackle data heterogeneity consequence of data partitions. 

However, the evaluation typically relies on centralized data. Furthermore, R-FedAvg is the only alternative 

to Per-FedAvg in terms of user personalization. Except for Per-FedAvg, all FedAvg-based algorithms fail on 

the issue of user personalization. By user personalization it is meant the customization of the global ML 

model to the local data of the edge. This happens because the global model that is sent to the edge never 

undergoes a tuning to the local dataset before being used in inference. Per-FedAvg is the only one that 

solves this situation by including additional training steps in the edge after the deployment of the global 

model. 
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3.3.3 Reliable-FedAvg (R-FedAvg) 

 R-FedAvg is a more reliable implementation of the FedAvg algorithm, which pretends to tackle the 

data poisoning and user personalization issues identified in Section 3.3.2. 

 Data poisoning: R-FedAvg softens the impact of malicious edge devices by employing a 

mechanism to detect local model updates whose parameters diverge considerably from the parameters 

returned by the remaining edge devices and from the initial ML model itself. The parameters returned by 

devices that fall in this category are discarded. For outlier detection, it is employed an unsupervised 

learning technique at each training round: hierarchical clustering algorithm [32]. The first point to be 

added to the algorithm is the one that represents current model parameters. Thus, every point that 

belongs to the same cluster as the initial point is an inlier. This mechanism ensures system robustness 

even to synchronized attacks, not assured by density-based algorithms [36]. This method does not require 

the definition of a specific number of clusters. Instead, it relies on a distance threshold, which must be 

tuned for each FL setting. The algorithm clusters each sample to the initial point if the distance between 

data is lower or equal to the threshold value. If the distance is higher than the threshold, the respective 

parameters are discarded and the device is identified as malicious. To tune this hyper-parameter, it must 

be considered that for a classic training process, parameter updates tend to be much lower in magnitude 

in later stages of the training. Similarly, the distance between the local model parameters and the current 

global model is expected to be small. 

 User personalization: Some device's performance can be penalized due to the overall model 

generalization of FedAvg. To deal with this performance loss, R-FedAvg introduces an additional training 

step after the federated averaging algorithm. The server sends the updated model to the devices when 

the aggregation process is completed. Then, new local training is performed with minor model changes. 

This second iteration allows the global model to tweak to edge local data, improving the local's 

performance. Ensuring minor changes on this local model update is essential to avoid local model 

overfitting. Therefore, this is achievable using a significantly lower learning rate (e.g., using a local learning 

rate a hundred times lower than the value used on the training round process). The parameter λ 

represents the learning rate reduction factor and is introduced to control the model parameters 

adjustment. For the global model training rounds, it's set to a unit value, and for the local model tweak, 

it's set to a tunable value between zero and one. The full process is described in Algorithm 2. 
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Algorithm 2: R-FedAvg. The K clients are indexed by k; β is the local minibatch size, E is the number 

of local epochs, η is the learning rate, and λ is the learning rate reduction factor 

1:  Server executes: 

2:  Initialize 𝑤0 

3:  for each round 𝑡 = 1,2, … do 

4:   𝑚 ← 𝑚𝑎𝑥(𝐶 ⋅ 𝐾) 

5:   St random set of m clients 

6:   for each client 𝑘 ∈ 𝑆𝑡 in parallel do 

7:    𝑤𝑡+1
𝑘 ← 𝐶𝑙𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝐸, 𝑤𝑡, η) 

8:   end for 

9:   Validate models updates 

10: 
  

𝑤𝑡+1 ← ∑
𝑛𝑘

𝑛
𝑤𝑡+1

𝑘

𝐾

𝑘=1

 

11:   for each client 𝑘 ∈ 𝑆𝑡 in parallel do 

12:    𝑤𝑡+1
𝑘 ← 𝐶𝑙𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝐸, 𝑤𝑡, η, λ) 

13:   end for 

14  end for 

3.3.4 Round Participants Selection 

 Each training round performs over a set of devices. For instance, the number of available devices 

to participate in a training round can exceed the minimum number of devices required to complete the 

round. This scenario requires a selection mechanism that allows a fair and distributed selection. The goal 

is that every device has the same chance to participate in the training process as the remaining ones, not 

favoring any parties. The most straightforward approach is to implement a simple random selection. This 

way, from a given population, a fraction is randomly selected. This approach avoids bias and theoretically 

gives the same chance to each device to participate in a training round. However, there are some 

problems related to sample selection beyond bias. As covered in the previous subsection, data partition 

depends directly on each device's usage. This way, a simple random selection is not representative of the 

entire population. 

 The selection process is the first step to reduce the unbalanced data partition effect. The more 

random the training data is, the more generalistic the final model will be. Furthermore, there are two 

solutions for fair device selection: (i) stratified sampling and (ii) clustered sampling. Stratified sampling 

relies on selecting devices that represent a group or a sub-population. The main goal of this approach is 

to select different parties that represent each of the model class predictions. However, this approach 

requires that the server have some information about each local dataset. Even that this avoids raw data 

exposure, some representative information needs to be shared. This way, clustered sampling comes up 
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as an alternative. This approach selects random devices from clusters. In a real-world scenario, this 

algorithm allows the server to choose different users to participate in a training round based on the 

device’s location or time zone. Different random selection approaches are presented in Figure 3.6. The 

FLS developed in this framework prioritizes users that performed fewer training steps. To accomplish so, 

a table is created wherein the entries are the devices and the number of performed training steps 

associated with each device. If all devices have been selected the same number of times, the selection 

is random. 

 
Figure 3.6: Selection mechanisms 

3.3.5 Outlier Detection Mechanism 

 Unsupervised learning methods allow the detection of anomalies during each training round. Outlier 

detection performs through the implementation of a hierarchical clustering algorithm. Rather than defining 

the number of clusters as in the k-means approach, this mechanism allows the evaluation of different 

data points distances. Furthermore, it ensures system robustness even to synchronized attacks, not 

assured by density-based approaches. The algorithm clusters each sample to the initial point if the 

distance between data is lower or equal to the threshold value. 

 

Figure 3.7: Clustering process dendrogram 
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 The clustering starting point is the current global model. The distance between the current model 

state and each participant's model is used as a selection criterion. The received model updates that are 

not too different from the current model are seen as helpful to the global model update. Moreover, such 

updates are classified as inliers. Devices that are not part of this cluster, on the other hand, are considered 

outliers. The outlier detection system enables the detection of malicious devices and, as a result, their 

removal. The procedure of detecting outliers is depicted in Figure 3.7. 

         Since threshold definition is a critical point to the deployment of the FLS, there is a demand to 

define the threshold value. The threshold value is a hyperparameter that demands a tuning process and 

represents the model change tolerance in each training round. However, the training process on the 

server before the federated training deployment can be a starting point for this hyperparameter tuning. 

Empirical and experimental results have shown that averaging the models distance values on the 

convergence state and doubling the result value is a good start point for the threshold value tuning, 

covering the federated training updates produced by different valid parties. The procedure of defining the 

threshold value is depicted in Figure 3.8. 

 

Figure 3.8: Outlier detection threshold definition 
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Chapter 4 

 

Experimental Results 

 Previous chapters outline the design stage of the local training algorithm and the FLS central server 

proposed in this MSc thesis. This chapter aims to present the experimental results of the developed 

system validation process. The chapter splits into three main subsections: (i) L-SGD results and (ii) R-

FedAvg results. The first outline the evaluation metrics used in this chapter. The second subsection 

presents the experimental results of the L-SGD algorithm. Finally, the third subsection focuses on 

decentralized learning and presents the evaluation of R-FedAvg in the FL environment. 

4.1 L-SGD 

 The evaluation of L-SGD is performed in terms of (i) accuracy, (ii) latency, and (iii) memory footprint. 

As this work focus on classification applications, our main metric to evaluate a model relies on the 

prediction accuracy, which can be obtained through Equation 14.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
 (14) 

 Firstly, its presented a comparison of the floating-point version of L-SGD against the classic SGD 

implemented by TensorFlow and running on an AMD Ryzen 7 3700X. Then, the quantized and floating-

point versions of L-SGD are compared on an STM32F767-ZI (Cortex-M7 @ 216MHz). For the tests, it was 

borrowed a dataset from [4], which represents the cognitive distraction state of casual drivers under 

different driving scenarios, and built an ANN with the following architecture: 

• input layer: 6 nodes 

• hidden layer: 40 nodes with sigmoid activation; 

• hidden layer: 32 nodes with sigmoid activation; 

• output layer: 1 node with softmax activation. 

 For both test scenarios previously described, it was performed two training sessions. The first is 

common to both test scenarios and was performed on the cloud server, using TensorFlow. A portion 
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(70%) of the dataset is used for training the ANN previously defined along 100 epochs with a batch size 

of 10. The floating-point version of the ANN achieved an accuracy of 83.02%, while the quantized version 

achieved an accuracy of 82.58%. 

4.1.1 L-SGD (float-32) vs. SGD 

 To compare the floating-point version of L-SGD against the classic SGD, the floating-point ANN from 

the first training session was re-trained on an AMD Ryzen 7 3700X using both algorithms. The remaining 

(30%) of the dataset is used to re-train the ANN along 100 epochs, with a batch size of 1, and no data 

shuffling. Results are detailed in Table 4.1. 

Table 4.1: L-SGD (float-32) vs. SGD: accuracy, latency, and memory footprint 

Algorithm Accuracy (%) Latency (s/epoch) Memory footprint (bytes) 

SGD 91.94 2.5290 6792 

L-SGD (float-32) 91.82 0.1546 5860 

 Accuracy: The maximum accuracy is registered for the classic SGD implemented by TensorFlow. 

Nevertheless, the accuracy loss of L-SGD is only 0.12%. This is not a direct consequence of the node 

delta optimization, but an effect of the different approximations made in the mathematical calculations 

performed during the forward and backward passes of the training algorithms. 

 Latency: The floating-point L-SGD is 16.35x faster than SGD to re-train the ANN previously 

described. This is a result of the node delta optimization and of the strategy used to differentiate the loss 

and activation functions in the chain rule for each weight. As observed in Figure 3.3, the node delta 

optimization leads to one less multiplication in the chain rule of weights belonging to the output layer. 

This difference is increased as the backward pass approaches the input layer, as the optimization 

delivered by the node delta parameter is even bigger in hidden and input layers. 

 Memory footprint: For the ANN previously detailed, L-SGD requires 86.28% of the memory 

required by SGD. As ANNs get wider, the number of weights increases much faster than the number of 

neurons. Considering that SGD has a memory footprint that doubles the weight size and L-SGD a memory 

footprint that equals the weight size plus the neuron size, L-SGD has the potential to drastically reduce 

the memory footprint in the training of large ANNs. To prove this effect, the floating-point L-SGD and SGD 

are compared in the training of three more ANNs, with more and larger hidden layers. As detailed in 

Figure 4.1 the higher the number of model parameters, the higher the reduction on memory footprint. 

For the largest model, L-SDG only requires 38.00% of the memory required by SGD. 
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Figure 4.1: Memory footprint test: SGD vs. L-SGD (float-32 vs. int-8 vs. int-16) 

4.1.2 Q-format Update Under CMSIS-NN Policy 

 The forward pass follows the CMSIS-NN quantization policy and is based on the previously defined 

q-format. Additionally, changes in the model require the update of these previously defined q-formats. On 

the target systems, updating the quantization formats of the weights and biases is a simple but time-

consuming process. However, updating each layer's input and output q-formats is a procedure that cannot 

be performed on the deep edge. This update is impractical due to the requirement for a large amount of 

memory. The forward pass process becomes obsolete since each layer's input and output quantization 

q-formats are not updated. Instead of the prediction error being caused exclusively by incorrect model 

parameter settings, it also results from incorrect q-format settings. 

 

(a) Layer 0 parameters Q-format 
 

(b) Layer 1 parameters Q-format 

 

(c) Layer 2 parameters Q-format 
 

(d) Layers outputs Q-format 
Figure 4.2: Q-format evolution 
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 As a result, training becomes redundant, and model accuracy decreases rather than improves. 

However, experimental results show that as the training process advances, the updating of quantization 

formats tends to stall. The model accuracy convergence leads to progressively smaller model 

modifications. Figure 4.2 depicts the evolution of the model parameters' q-formats and the inputs and 

outputs of each layer. It is then possible to analyze that from epoch 30 onwards there are practically no 

changes in q-formats. Reaching the accuracy convergence allows the implementation of the quantized 

training. As a result, the version of L-SGD (int-8) can be used to fine-tune the model to the local datasets.  

4.1.3 L-SGD (float-32) vs. L-SGD (int-8) 

 To compare the float-32 and int-8 versions of L-SGD, the quantized ANN from the first training 

session is deployed to an STM32F767-ZI MCU. Then, there is a re-train using both versions of L-SGD 

under the same conditions of the first test scenario. Results are detailed in Table 4.2. 

Table 4.2: L-SGD (float-32) vs. L-SGD (int-8): accuracy, latency, and memory footprint 

Algorithm Accuracy (%) Latency (s/epoch) Memory footprint (bytes) 

L-SGD (int-8) 75.50 16.36 1465 

L-SGD (float-32) 91.82 32.28 5860 

 Accuracy: As detailed in Table 4.2, the int-8 version of L-SGD induces significant accuracy loss 

when compared to the floating-point version. While the floating-point version increases the accuracy of 

the base ANN by 8.8%, the quantized version decreases it by 7.52%, neglecting the purpose of model re-

training in FL. This is a consequence of the fast saturation of weights and biases during the first iterations 

of the quantized training. One solution to this problem would be dynamic quantization. However, this 

would impose tremendous computation overhead and neglect the purpose of quantized training. 

Nevertheless, quantized training is a solution for the later training iterations.  

 Since gradient steps tend to be lower at this point, the magnitude of the update reduces, which 

avoids the saturation threat. To prove this point, the quantized version of L-SGD is compared against the 

floating-point version to tweak a global ANN returned by our FLS to the local data distribution. Results are 

detailed in Table 4.3. The quantized version of L-SGD even outperforms the floating-point version. The 

lower accuracy of floating-point L-SGD is a consequence of the quantization error. As ANNs received in 

the edge are quantized, they need to be dequantized before the training process and quantized again 

when training finishes. 
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Table 4.3: L-SGD (float-32 vs. int-8) for small updates in quantized ANNs 

 Accuracy (%) (float-32) Accuracy (%) (int-8) 

Baseline 91.82 90.96 

L-SGD (float-32) 91.17 91.95 

L-SGD (int-8) 93.39 92.79 

 Latency: The quantized version of L-SGD is 1.97x faster than the floating-point version. Although 

the quantized version tends to be always faster, the actual speedup is highly dependent on the target 

platform. The results were extracted for an STM32F767-ZI MCU, which features an FPU. For an MCU 

with no FPU, this speedup is expected to be even higher, as floating-point L-SGD tends to be slower. 

 Memory footprint: The quantized version of L-SGD requires only 25% of the memory used by 

the floating-point version. As shown in figure Figure 4.1, this high memory saving is independent of the 

ANN architecture. This characteristic makes the quantized L-SGD a very interesting option to perform 

small tweaks on ANNs in applications with very limited memory resources. 

4.1.4 L-SGD (int-8) vs. L-SGD (int-16) 

 To compare the int-8 and int-16 versions of L-SGD, the quantized ANN from the first training session 

was deployed to an STM32F767-ZI MCU and retrained using both versions of L-SGD. The re-train was 

performed along 100 epochs, with a batch size of 1, and no data shuffling. Training an ML model relies 

on multiple small steps. Taking large model parameters changes in each gradient can take the learning 

process to a performance loss since the minimum loss is unreachable. This way, a learning rate is 

introduced in the training process to reduce each parameter update variance. However, quantization 

errors can override the learning update and consequently discard the learning step. As a consequence, 

it was developed and compared two versions of L-SGD that operates over quantized data: (i) L-SGD (int-

8) and (ii) L-SGD (int-16). Results are detailed in Table 4.4. 

Table 4.4: L-SGD (int-8) vs. L-SGD (int-16): accuracy, latency, and memory footprint 

Algorithm Accuracy (%) Latency (s/epoch) Memory footprint (bytes) 

L-SGD (int-8) 75.50 16.36 1465 

L-SGD (int-16) 75.89 28.23 2857 

 Accuracy: The extension of 8-bit to 16-bit data allows an error reduction on the intermediate 

computations. Table 4.5 and  
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Table 4.6 show that increasing the precision on the backward pass reduces the error in the derivative of 

the loss and activation functions, when considering the equivalent floating-point values as reference. This 

is a consequence of extending the data range which softens the saturation effect introduced by the 

quantization process. The Q-format of the weights and bias are updated at each training iteration. 

However, the q-format of the layers' input and output remains constant, which induces errors on forward 

pass. Consequently, the accuracy loss of the 16-bit integer data method is similar to the 8-bit integer data 

method (Table 4.4). 

 Latency: The 16-bit integer version of L-SGD requires a data extension operation, leading to a 

computation overhead in the training process. As expectable, the latency of this version is higher than the 

8-bit version. Experimental results (Table 4.4) show that L-SGD(int-16) version is 1.73x slower than the 

L-SGD (int-8).  

 Memory footprint: The data extension introduced in the 16-bit integer version leads to an 

expansion of the memory footprint. This mechanism requires 1.95x of the memory allocation of the 8-bit 

integer version (Table 4.4). The memory footprint required by L-SGD (int-16) for training different ANN 

architectures is detailed in Figure 4.1. 

Table 4.5: Loss function gradient computation analysis 

 Mean error Mean error (%) 

Loss function Int-8 Int-16 Int-8 Int-16 

MSE 0,0086 0,0000 4,29% 0,00% 

CE 2,2604 0,0003 57,91% 0,06% 

BCE 2,8910 0,0008 68,50% 0,03% 
 

Table 4.6: Activation function gradient computation analysis 

 Mean error Mean error (%) 

Activation function Int-8 Int-16 Int-8 Int-16 

ReLU 0,0777 0,0000 7,77% 0,00% 

Sigmoid 0,0144 0,0009 13,34% 0,75% 

TanH 0,0195 0,0006 7,06% 0,23% 
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4.2 R-FedAvg 

 The R-FedAvg evaluation performs on a synthetic federated scenario, in which the dataset splits 

over 100 edge devices. The trained ANN (architecture defined in Section 4.1) is evaluated under (i) 

different data partition schemes and (ii) data perturbation.  

4.2.1 Data Partition 

 The R-FedAvg is evaluated under four data partition schemes: (i) IID, (ii) unbalanced, (iii) Non-IID 

Fair, and (iv) Non-IID Random. IID refers to the optimal data partition scheme - every user has the same 

local dataset size and each class is equally represented. An unbalanced scheme considers different 

amounts of data in each device. The Non-IID schemes match the most realistic data partition - the dataset 

size differs among devices and different classes are not equally represented in each device. Non-IID fair 

ensures that all edge devices are called the same number of times during training, while Non-IID random 

not. For each data partition, the simulation performed over 2000 rounds and 10% of the dataset was 

used on the server to evaluate the global model accuracy. The remaining 90% of the dataset was 

partitioned over 100 edge devices according to the four described partition schemes. 

 

Figure 4.3: Accuracy on cloud server for R-FedAvg/FedAvg 

 Figure 4.3 shows the average accuracy of 10 tests. As observed, the aggregation mechanism of R-

FedAvg, which is the same as FedAvg, converges independently of the data partition scheme. Considering 

the centralized dataset of the server, the difference between the most and least accurate model is no 

more than 2.81%. However, the ANN must fit the data of deep edge devices, rather than the centralized 

data. This is where FedAvg shows one of its flaws. Figure 4.4-a) shows the average accuracy of edge 

devices per training round in contrast to server accuracy. As observed, the ANN shows a very unstable 

accuracy. The edge accuracy drops on average 4% after the training round 100. The maximum average 

accuracy drop was registered before this round and achieved a value of 8.3%. If considered the accuracy 
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losses on individual devices, these values go even further - 60% of the devices registered drops higher 

than 15% before the training round 100 and higher than 9% after that round. 

 To tackle this issue, R-FedAvg is integrated with an additional training round, which is strictly 

performed on the edge after the deployment of the new global ANN. This extra training round allows users 

to tweak the ANN to fit the local dataset. For this training round, the process relies on L-SGD (int-8) 

described in Section 3.2.1. As observed in Figure 4.4-b), the average accuracy on the edge is now far 

more stable and outperformed the accuracy measured in the cloud 

 

(a) Average edge accuracy for FedAvg 

 

(b) Average edge accuracy for R-FedAvg 

Figure 4.4: Average edge accuracy: FedAvg vs. R-FedAvg  

4.2.2 Data Perturbation 

 Stragglers: Lost connections due to connectivity problems, device energy constraints, or device 

availability expose the system to middle-round dropouts. The main problem of this real world-scenario is 

the slow down of the overall learning process. Since those devices do not complete the training plan, the 

aggregation discards their progress and performs over a smaller portion of clients. Figure 4.5 shows that 

the presence of stragglers does not affect the convergence speed. However, the higher the percentage of 

stragglers, the higher the accuracy variance. The oscillating pattern results from increasing the weight of 

devices that completed the round. Increasing the weight of a device takes the ANN to fit that device 

instead of improving the overall model. Biased ANNs will outperform on some edge devices, but will 

underperform on the majority of them, leading to accuracy loss. After the analysis of Figure 4.5, it is 

proposed to discard a training round if the percentage of stragglers is over 50%. 



 

 

Chapter 4 – Experimental Results 

A Federated Learning Framework for the Next-Generation Machine Learning Systems 59 
Diogo André Veiga Costa - Universidade do Minho 

 

Figure 4.5: R-FedAvg under different percentage of stragglers 

 Data poisoning: An attacker can poison the local dataset of an edge device or the respective 

training report. To evaluate the data poisoning effect, it was considered four types of noise: (i) gaussian, 

(ii) salt&pepper, (iii) speckle, and (iv) poison, as presented in Figure 4.6. Furthermore, the selection of 

devices that contain poisoned data is random, and each device can be affected by more than one type of 

noise and varying intensity. Once a device is selected as a poison data holder, the entire local dataset is 

poisoned. Figure 4.7 details the accuracy of the global ANN returned by R-FedAvg for different percentages 

of data poisoners in the network. The worst test case scenario considered that 90% of the devices stored 

poisoned data. As can be observed, there is no relevant accuracy loss or degradation in the convergence 

speed when the percentage of poisoners increase. 

 

Figure 4.6: Different noise added to data 

 

Figure 4.7: R-FedAvg under different percentage of data poisoners 
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 To test the behavior of FedAvg against R-FedAvg when facing training report poisoning, it was 

considered a federated training with 50 training rounds and poisoned the training report of 1 out of 100 

edge devices at the training round 31. The amplitude of weights in this device is augmented by 30000x 

and the size of the local dataset size by 500x. Results are detailed in Figure 4.8. As observed, 

compromising the training report of a single device can compromise the whole aggregation mechanism 

of FedAvg. Amplifying the magnitude of weights to extremely high values and increasing their relevance 

on the whole aggregation mechanism, by cheating on the local dataset size, is sufficient to cause an 

overflow on the loss calculated during the aggregation, leading the FLS to a non-return point. To tackle 

this issue, R-FedAvg softens the impact of data poisoning by employing a mechanism to detect and 

discard local model updates whose parameters diverge considerably from the parameters returned by 

the remaining edge devices and from the current global ANN. Figure 4.8 shows that R-FedAvg is not 

vulnerable to this attack as the accuracy of the aggregated model continues to increase after the attack. 

 

Figure 4.8: FedAvg vs. R-FedAvg under training report poisoning
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Chapter 5 

 

Conclusions 

 The last chapter of this MSc thesis presents the conclusion of this work based on the analysis of 

the results presented in the previous section.  Furthermore, this chapter outlines some suggestions aiming 

to improve and extend the developed system. The struct of this chapter splits into two main subsections: 

(i) discussions and (ii) future work. 

5.1 Discussion 

 The design of an FL framework requires intrinsic knowledge in a wide range of scientific areas. The 

development of the local edge mechanisms addresses multiple topics to enable memory and complexity 

reduction associated with the stringent requirements of low-end devices. The development of the edge 

process fundamentally relies on two main topics: (i) ML internal computations and (ii) quantization 

schemes, outlined in Chapter 2 aiming to cover every key knowledge to understand the designing steps.  

         The deployed edge mechanisms are composed of two different methods: (i) inference pass and (ii) 

training pass. The inference mechanism relies on the CMSIS-NN library. To ease the process of porting 

ANNs developed using conventional tools such as TensorFlow to edge devices, it was developed a 

framework that abstracts the programmer from the constraints of CMSIS-NN. The framework also allows 

the definition of a training plan to be deployed on edge. The developed tool ensures dataset quantization 

and code generation. 

  Training on edge is a high complexity process. The analysis of different optimization methods 

allowed the identification of SGD as the most reliable algorithm to be deployed on the deep edge. The 

developed training algorithm (L-SGD) is a version of the classic SGD algorithm optimized for low-memory 

footprint and latency on Arm Cortex-M MCUs. To test the accuracy of quantized training it was developed 

three versions of this algorithm: (i) L-SGD (float-32), (ii) L-SGD (int-8), and (iii) L-SGD (int-16). Results show 

that L-SGD (float-32) is 16.35x faster than the classic SGD implemented by TensorFlow while using 

13.72% less memory. This comes at the cost of a negligible accuracy drop of 0.12%.  
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 Although the quantization effect does not produce significant loss performance on the inference 

process, the learning process requires a most precise approach. Furthermore, fully-quantized training 

over 8-bit data is still not feasible as it induces severe accuracy losses. To tackle the accuracy loss 

produced by the 8-bit version of L-SGD, a 16-bit version of the L-SGD was introduced. However, the 

accuracy loss was similar to the 8-bit version, and the overhead introduced by the data extension 

operation increases the process latency. This result shows that training only on quantized parameters is 

unreliable under the defined quantization policy. However, L-SGD (int-8) is very useful to tweak global 

ANNs to the local data distribution when the FLS deploys a new ANN to the edge. At this stage, it 

outperforms L-SGD (float-32) by 2.22% with a speedup of 1.97x while requiring only 25% of the memory 

used by the floating-point version. 

 Table 5.1 summarizes the basic properties of the optimizers previously discussed in Section 

2.1.4.5 and the developed training mechanism, L-SGD. Due to limited hardware resources, there is a 

demand for methods that prioritize memory footprint reduction while maintaining low computational 

complexity. Besides the presented solution, there are other optimization mechanisms. However, the 

introduction of complex mathematical operations is prohibitive to deep edge devices. Furthermore, 

implementing such techniques on target devices is unreliable, and they are not explored for this purpose. 

In opposition, L-SGD aims to tackle the addressed problem by reducing the memory footprint and the 

computation cost of the training process. 

Table 5.1: Functionality of previous research optimizers against L-SGD 

Optimizer 
Tunable 

parameters 
Advantages Disadvantages 

GD [43] 1 Low computational complexity 
High memory footprint 

Vulnerable to local minima stuck 

SGD [44] 1 
Low computational complexity 

Reduced memory footprint 

Vulnerable to local minima stuck 

Slower than GD 

AdaGrad [45] 1 Automatic learning rate decay 
Slower convergence at later 

iterations 

Adam [46] 3 Faster training 

High memory footprint 

Higher number of tunable 
parameters 

L-SGD 1 
Low computational complexity 

Reduced memory footprint 

Vulnerable to local minima stuck 

Slower than GD 

 The development of a robust centralized aggregator is crucial to FLS. There is a demand for a 

design of a reliable server that meets the fair aggregation, robustness to data heterogeneity, and 
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robustness to adversarial behaviors. For this purpose, it was evaluated a series of aggregation algorithms, 

from which stand out the FedAvg (detailed in Section 2.2.4). FedAvg is resistant to data heterogeneity, 

but it has major shortcomings in terms of fair aggregation and overcoming adversarial behavior. This MSc 

thesis focused on increasing the robustness of FedAvg in these three metrics, which concluded in a novel 

aggregation algorithm called R-FedAvg. The developed mechanism tackles two major flaws of the current 

state-of-the-art aggregation mechanism. The introduction of an additional training step allows users to 

personalize the model to local data, boosting the model accuracy. This paradigm shift reduces the data 

heterogeneity effect, reducing the effect of data partitions. R-FedAvg pushes the state-of-the-art by 

providing mechanisms to detect and discard poisoned training reports. Results show that while FedAvg 

under this attack leads an FLS to a non-return point, R-FedAvg continues with the training pass without 

any accuracy loss. 

 Table 5.2 summarizes the basic properties of the aggregation mechanisms previously discussed 

in Section 2.2.4 and the developed mechanism, R-FedAvg. As can be observed, aggregation algorithms 

developed to date have never considered data poisoning as a priority. R-FedAvg pretends to push the 

state-of-the-art by proposing a mechanism to detect and discard poisoned training reports. Furthermore, 

R-FedAvg is the only alternative to Per-FedAvg in terms of user personalization, allowing edge devices to 

perform some additional training steps after the deployment of the global ANN to the edge. These 

additional training steps enable edge devices to tweak the global model to the local data distribution. 

Table 5.2: Functionality of previous research aggregation mechanisms against R-FedAvg 

R&D 

Study 

Non-IID 

Data 

User 
Personalization 

Stragglers 
Dataset 

Poisoning 
Train Report 

Poisoning 

FedAvg [59] Yes No Drop-out No No 

FedMA [74] Yes No n.d. No No 

FedProx [75] Yes No 
Tolerates 

partial work 
No No 

q-FedAvg [76] Yes No n.d. No No 

Per-FedAvg [77] Yes Yes n.d. No No 

R-FedAvg Yes Yes Drop-out No Yes 

 In conclusion, the developed framework presents a solution that allows a robust distributed learning 

solution that can perform training on multiple low-end devices. Training only on quantized conditions over 
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CMSIS-NN constraints with negligible performance loss has shown as an unreliable process. However, 

training the model over floating-point data, and performing a model tweak over quantized procedures has 

shown a significant performance increase. Thus, the features included in this framework on the FL 

process revealed considerable robustness which hikes the deployment of a real-world FLS. 

5.2 Future work 

 Analyzing the experimental results and the conclusions in the previous section allows to define 

some points where the developed FLS can be improved or extended with new functionalities. Although 

the goals for the FLS have been met, there are currently some limitations. Although the floating-point 

solution reduced the memory footprint, full quantization processes allow an even more significant 

reduction as presented before. The next steps on the development of FLS on low-end devices must 

consider the research of new quantization schemes that reduce the training process error. 

 Direct attacks do not affect the users and server ecosystem directly. However, the learning effect 

process is delayable through malicious behaviors in communications. As a consequence, secure 

communication channels must be integrated in a future version of this FLS. Although the introduced 

overhead by the encryption and decryption operations, this mechanism adds a new layer of security. 

Exposing data on an open communication channel is always an open window to malicious actors. 

         Finally, a future step is to extend the current framework to support different model architectures. 

Currently, the developed framework only supports ANNs with fully-connected layers. However, CNN 

architectures are a commonly explored architecture in image classification applications, registering state-

of-the-art accuracy in a myriad of applications, from healthcare to face recognition. Future versions of this 

FLS must provide support for different ML model architectures such as CNN and Long Short-Term 

Memory (LSTM). To extend the framework application, future versions of this FLS must also seek to 

provide support for RISC-V (RV32IMCXpulp) MCUs [10], [79], [80], which is a rising computing 

architecture for ML in low-power applications.
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