2,068 research outputs found

    Efficient Selection of Multiple Objects on a Large Scale

    Get PDF

    Design and development of a multifunctional surgical device for ground and space-based surgical applications.

    Get PDF
    With the possibility of longer ventures into space, NASA will face many new medical challenges. The ability to surgically treat trauma and other disorders in reduced gravity requires reliable wound access, containment, and visualization. In collaboration with Carnegie Mellon University, the University of Louisville is currently developing the AISS (Aqueous Immersion Surgical System) to increase efficiency and control of the operative field in space-based surgeries. Reliable wound access and containment is achieved by placing a transparent wound-isolation dome securely over the wound-site and pressurizing it with a saline solution. Leak-free trocars provide access ports for various surgical instruments. This system will prevent contamination of the environment from blood and other bodily fluids, control bleeding, provide a sterile microenvironment for surgical intervention, and maintain visualization of the operative field. The objective of this project is to develop a Multifunctional Surgical Device (MFSD) that is compatible will the AISS system and conventional ground-based surgical techniques. Economy and efficiency of instrument exchange are necessary given the limited resources and number of crew members on an exploration space flight. The MFSD aims to provide suction, irrigation, illumination, visualization, and cautery functionality through a single-instrument via finger-tip control. This multifunctionality will reduce intraoperative blood loss and help maintain visualization of the operative field by removing blood and debris. Also, the MFSD will help preserve surgical focus and minimize surgeon manual movement and instrument exchanges. Applicability of the MFSD for ground-based surgical procedures is also anticipated. This project has been successful in developing a multifunctional device that integrates suction, irrigation, and illumination. Testing of these three functions has been performed on the benchtop and in a live-animal model using a stand-alone control system. After completing the myRIO integration of the MFSD with the Fluid Management System (FMS), further testing will allow for validation of device functionality and efficacy with the AISS. Future work for this project will include preparing for a suborbital space flight of the AISS on the Virgin Galactic SpaceShipTwo planned for later 2018. This flight test will evaluate irrigating, illuminating, and suctioning analog blood from a simulated wound-site in microgravity. The addition of cutting and coagulation cautery and visualization functions is planned for subsequent months. Earth-based development and utilization of the MFSD for surgical procedures is also anticipated

    Intelligent Selection Techniques For Virtual Environments

    Get PDF
    Selection in 3D games and simulations is a well-studied problem. Many techniques have been created to address many of the typical scenarios a user could experience. For any single scenario with consistent conditions, there is likely a technique which is well suited. If there isn\u27t, then there is an opportunity for one to be created to best suit the expected conditions of that new scenario. It is critical that the user be given an appropriate technique to interact with their environment. Without it, the entire experience is at risk of becoming burdensome and not enjoyable. With all of the different possible scenarios, it can become problematic when two or more are part of the same program. If they are put closely together, or even intertwined, then the developer is often forced to pick a single technique that works so-so in both, but is likely not optimal for either, or maybe optimal in just one of them. In this case, the user is left to perform selections with a technique that is lacking in one way or another, which can increase errors and frustration. In our research, we have outlined different selection scenarios, all of which were classified by their level of object density (number of objects in scene) and object velocity. We then performed an initial study on how it impacts performance of various selection techniques, including a new selection technique that we developed just for this test, called Expand. Our results showed, among other things, that a standard Raycast technique works well in slow moving and sparse environments, while revealing that our new Expand technique works well in denser environments. With the results from our first study, we sought to develop something that would bridge the gap in performance between those selection techniques tested. Our idea was a framework that could harvest several different selection techniques and determine which was the most optimal at any time. Each selection technique would report how effective it was, given the provided scenario conditions. The framework was responsible for activating the appropriate selection technique when the user made a selection attempt. With this framework in hand, we performed two additional user studies to determine how effective it could be in actual use, and to identify its strengths and weaknesses. Each study compared several selection techniques individually against the framework which utilized them collectively, picking the most suitable. Again, the same scenarios from our first study were reused. From these studies, we gained a deeper understanding of the many challenges associated with automatic selection technique determination. The results from these two studies showed that transitioning between techniques was potentially viable, but rife with design challenges that made its optimization quite difficult. In an effort to sidestep some of the issues surrounding the switching of discrete techniques, we sought to attack the problem from the other direction, and make a single technique act similarly to two techniques, adjusting dynamically to conditions. We performed a user study to analyze the performance of such a technique, with promising results. While the qualitative differences were small, the user feedback did indicate that users preferred this technique over the others, which were static in nature. Finally, we sought to gain a deeper understanding of existing selection techniques that were dynamic in nature, and study how they were designed, and how they could be improved. We scrutinized the attributes of each technique that were already being adjusted dynamically or that could be adjusted and innovated new ways in which the technique could be improved upon. Within this analysis, we also gave thought to how each technique could be best integrated into the Auto-Select framework we proposed earlier. This overall analysis of the latest selection techniques left us with an array of new variants that warrant being created and tested against their existing versions. Our overall research goal was to perform an analysis of selection techniques that intelligently adapt to their environment. We believe that we achieved this by performing several iterative development cycles, including user studies and ultimately leading to innovation in the field of selection. We conclude our research with yet more questions left to be answered. We intend to pursue further research regarding some of these questions, as time permits

    Augmenting the landscape scene: students as participatory evaluators of mobile geospatial technologies

    Get PDF
    This paper provides a two-phase study to compare alternative techniques for augmenting landscape scenes on geography fieldtrips. The techniques were: a pre-prepared acetate overlay; a custom-designed mobile field guide; locative media on a smartphone; virtual globe on a tablet PC; a head-mounted virtual reality display, and a geo-wand style mobile app. In one field exercise the first five techniques were compared through analysis of interviews and student video diaries, combined with direct observation. This identified a particular challenge of how to direct user attention correctly to relevant information in the field of view. To explore this issue in more detail, a second field exercise deployed ‘Zapp’, a bespoke geo-wand-style app capable of retrieving information about distant landscape features. This was evaluated using first-person video and spatial logging of in-field interactions. This paper reflects upon the relative merits of these approaches and highlights particular challenges of using technology to mimic a human field guide in pointing out specific aspects of the landscape scene. We also explore the role of students acting as design informants and research co-participants, which can be mutually beneficial in promoting a critical appreciation of the role of technology to support learning about the landscape

    Bletchley Park text: using mobile and semantic web technologies to support the post-visit use of online museum resources

    Get PDF
    A number of technologies have been developed to support the museum visitor, with the aim of making their visit more educationally rewarding and/or entertaining. Examples include PDA-based personalized tour guides and virtual reality representations of cultural objects or scenes. Rather than supporting the actual visit, we decided to employ technology to support the post-visitor, that is, encourage follow-up activities among recent visitors to a museum. This allowed us to use the technology in a way that would not detract from the existing curated experience and allow the museum to provide access to additional heritage resources that cannot be presented during the physical visit. Within our application, called Bletchley Park Text, visitors express their interests by sending text (SMS) messages containing suggested keywords using their own mobile phone. The semantic description of the archive of resources is then used to retrieve and organize a collection of content into a personalized web site for use when they get home. Organization of the collection occurs both bottom-up from the semantic description of each item in the collection, and also top-down according to a formal representation of the overall museum story. In designing the interface we aimed to support exploration across the content archive rather than just the search and retrieval of specific resources. The service was developed for the Bletchley Park museum and has since been launched for use by all visitors

    The matrix revisited: A critical assessment of virtual reality technologies for modeling, simulation, and training

    Get PDF
    A convergence of affordable hardware, current events, and decades of research have advanced virtual reality (VR) from the research lab into the commercial marketplace. Since its inception in the 1960s, and over the next three decades, the technology was portrayed as a rarely used, high-end novelty for special applications. Despite the high cost, applications have expanded into defense, education, manufacturing, and medicine. The promise of VR for entertainment arose in the early 1990\u27s and by 2016 several consumer VR platforms were released. With VR now accessible in the home and the isolationist lifestyle adopted due to the COVID-19 global pandemic, VR is now viewed as a potential tool to enhance remote education. Drawing upon over 17 years of experience across numerous VR applications, this dissertation examines the optimal use of VR technologies in the areas of visualization, simulation, training, education, art, and entertainment. It will be demonstrated that VR is well suited for education and training applications, with modest advantages in simulation. Using this context, the case is made that VR can play a pivotal role in the future of education and training in a globally connected world

    Virtual Reality Wand Design and Fabrication

    Get PDF
    As virtual reality (VR) is becoming a more viable option for real world skills training, developers are attempting to uncover the methods and technologies that will lead to the most efficient transfer of knowledge and proficiency of the target tasks. Within these optimization issues lies the question that asks what type of VR interaction device will provide users with maximum control within the virtual environment (VE) while being a convenient and comfortable tool to use. An ideal interaction device should balance the factors of functionality, user satisfaction, and cost while yielding a well-designed product in the process. Although the needs for all VR systems are not the same, popular interaction devices in use today include wired gloves as well as VR wands, the current mode of interaction for study during this summer REU ISR project
    • 

    corecore